995 resultados para Leukotriene B4 (LTB4)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

von I. Benzinger

Relevância:

10.00% 10.00%

Publicador:

Resumo:

von A. Berliner

Relevância:

10.00% 10.00%

Publicador:

Resumo:

von [M.] Beermann und [Max.] Doktor

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aus der Sammlung des Leo Baeck Institute, digitalisiert in Kooperation mit dem Center for Jewish History, NY

Relevância:

10.00% 10.00%

Publicador:

Resumo:

von Gotthold Salomon

Relevância:

10.00% 10.00%

Publicador:

Resumo:

von A. Berliner

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aus der Sammlung des Leo Baeck Institute, digitalisiert in Kooperation mit dem Center for Jewish History, NY

Relevância:

10.00% 10.00%

Publicador:

Resumo:

von S. Bernstein. Hrsg. vom Kopenhagener Bureau der Zionistischen Organisation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neu übers. von B. Königsberger, illustriert von M. Kunstadt

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Von Ed. Birnbaum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

von B. Koenigsberger

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Allergic asthma is characterized by airflow obstruction, airway hyperresponsiveness (AHR) and chronic airway inflammation. We and others have reported that complement component C3 and the anaphylatoxin C3a receptor promote while C5 protects against the development of the biological and physiological hallmarks of allergic lung disease in mice. In this study, we assessed if the protective responses could be mediated by C5a, an activation-induced C5 cleavage product. Mice with ablation of the C5a receptor (C5aR) either by genetic deletion or by pharmacological blockade exhibited significantly exacerbated AHR compared to allergen-challenged wild-type (WT) mice. However, there were no significant differences in many of the other hallmarks of asthma such as airway infiltration by eosinophils or lymphocytes, pulmonary IL-4-producing cell numbers, goblet cell metaplasia, mucus secretion or total serum IgE levels. In contrast to elevated AHR, numbers of IL-5 and IL-13 producing pulmonary cells, and IL-5 and IL-13 protein levels, were significantly reduced in allergen-challenged C5aR-/- mice compared to allergen-challenged WT mice. Administration of a specific cysteinyl leukotriene receptor 1 (cysLT1R) antagonist before each allergen-challenge abolished AHR in C5aR-/- as well as in WT mice. Pretreatment with a C3aR antagonist dose-dependently reduced AHR in allergen-challenged WT and C5aR-/- mice. Additionally, allergen-induced upregulation of pulmonary C3aR expression was exaggerated in C5aR-/- mice compared to WT mice. In summary, deficiency or antagonism of C5aR in a mouse model of pulmonary allergy increased AHR, which was reversed or reduced by blockade of the cysLT1R and C3aR, respectively. In conclusion, this study suggests that C5a and C5aR mediate protection against AHR by suppressing cysLT and C3aR signaling pathways, which are known to promote AHR. This also supports important and opposing roles of complement components C3a/C3aR and C5a/C5aR in AHR. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytochromes P450 catalyze a monooxygenase reaction in which molecular oxygen is split and one oxygen atom is incorporated into the substrate. As a whole, P450 researchers have focused most of their attention on substrate metabolism and relatively little on how these enzymes are regulated. This study will focus on the regulation of two P450 isoforms known as, CYP2D6 and CYP4F11. ^ The human CYP2D gene locus contains two pseudogenes and one functional gene known as CYP2D6. This locus is highly polymorphic and produces several alternatively spliced transcripts from the pseudogene CYP2D7. My objective was to understand the role of SV5-in (splice variant 5), one of several alternative splice variants transcribed from the CYP2D7 pseudogene. My results indicate that SV5-in mRNA causes an increase in CYP2D6 protein levels and suggest that there is a role for SV5-in in regulation of CYP2D6 expression. ^ Second, CYP4F11 is a recently discovered and uncharacterized isoform, derived from the CYP4F subfamily. It metabolizes several clinically relevant drugs (i.e.—erythromycin and benzphetamine) and some endogenous inflammatory mediators (i.e.—LTB4). After evaluation of microarray data, I observed an increase in CYP4F11 mRNA levels from wild-type HCT116 cells compared to p53-null cells. Our objectives were to explore and understand this connection between p53 and CYP4F11. Microarray data were confirmed by Q-PCR, after which this effect was again observed at the protein level via Western blot and again at the promoter level via luciferase assay and chromatin immunoprecipitation. Our results indicate that p53 protein regulates expression of CYP4F11 mRNA and protein through CYP4F11 promoter binding (note that p53 binding to CYP4F11 DNA was not shown to be direct). These results signify a whole new level of regulation of drug metabolizing enzymes by p53. ^ An understanding of CYP4F11 regulation by p53 could help us understand another pathway leading to apoptosis or cell growth arrest. This can aid future drug studies and discover new drug metabolism pathways under the control of a tumor suppressor protein. An understanding of the CYP2D6 regulation pathway could illuminate the role of non-coding RNAs in the P450 field and potentially explain several inter-individual drug response variations observed in clinical medicine that are not yet completely explained by genotyping analysis. ^