908 resultados para Left ventricular ejection fraction
Resumo:
BACKGROUND Acute cardiogenic shock after myocardial infarction is associated with high in-hospital mortality attributable to persisting low-cardiac output. The Impella-EUROSHOCK-registry evaluates the safety and efficacy of the Impella-2.5-percutaneous left-ventricular assist device in patients with cardiogenic shock after acute myocardial infarction. METHODS AND RESULTS This multicenter registry retrospectively included 120 patients (63.6±12.2 years; 81.7% male) with cardiogenic shock from acute myocardial infarction receiving temporary circulatory support with the Impella-2.5-percutaneous left-ventricular assist device. The primary end point evaluated mortality at 30 days. The secondary end point analyzed the change of plasma lactate after the institution of hemodynamic support, and the rate of early major adverse cardiac and cerebrovascular events as well as long-term survival. Thirty-day mortality was 64.2% in the study population. After Impella-2.5-percutaneous left-ventricular assist device implantation, lactate levels decreased from 5.8±5.0 mmol/L to 4.7±5.4 mmol/L (P=0.28) and 2.5±2.6 mmol/L (P=0.023) at 24 and 48 hours, respectively. Early major adverse cardiac and cerebrovascular events were reported in 18 (15%) patients. Major bleeding at the vascular access site, hemolysis, and pericardial tamponade occurred in 34 (28.6%), 9 (7.5%), and 2 (1.7%) patients, respectively. The parameters of age >65 and lactate level >3.8 mmol/L at admission were identified as predictors of 30-day mortality. After 317±526 days of follow-up, survival was 28.3%. CONCLUSIONS In patients with acute cardiogenic shock from acute myocardial infarction, Impella 2.5-treatment is feasible and results in a reduction of lactate levels, suggesting improved organ perfusion. However, 30-day mortality remains high in these patients. This likely reflects the last-resort character of Impella-2.5-application in selected patients with a poor hemodynamic profile and a greater imminent risk of death. Carefully conducted randomized controlled trials are necessary to evaluate the efficacy of Impella-2.5-support in this high-risk patient group.
Resumo:
BACKGROUND Ventricular torsion is an important component of cardiac function. The effect of septic shock on left ventricular torsion is not known. Because torsion is influenced by changes in preload, we compared the effect of fluid loading on left ventricular torsion in septic shock with the response in matched healthy control subjects. METHODS We assessed left ventricular torsion parameters using transthoracic echocardiography in 11 patients during early septic shock and in 11 age- and sex-matched healthy volunteers before and after rapid volume loading with 250 mL of a Ringer's lactate solution. RESULTS Peak torsion and peak apical rotation were reduced in septic shock (10.2 ± 5.2° and 5.6 ± 5.4°) compared with healthy volunteers (16.3 ± 4.5° and 9.6 ± 1.5°; P = 0.009 and P = 0.006 respectively). Basal rotation was delayed and diastolic untwisting velocity reached its maximum later during diastole in septic shock patients than in healthy volunteers (104 ± 16% vs 111 ± 14% and 13 ± 5% vs 21 ± 10%; P = 0.03 and P = 0.034, respectively). Fluid challenge increased peak torsion in both groups (septic shock, 10.2 ± 5.3° vs 12.6 ± 3.9°; healthy volunteers, 16.3 ± 4.5° vs 18.1 ± 6°; P = 0.01). Fluid challenge increased left ventricular stroke volume in septic shock patients (P = 0.003). CONCLUSIONS Compared with healthy volunteers, left ventricular torsion is impaired in septic shock patients. Fluid loading attenuates torsion abnormalities in parallel with increasing stroke volume. Reduced torsional motion might constitute a relevant component of septic cardiomyopathy, a notion that merits further testing in larger populations.
Resumo:
BACKGROUND: Obesity is a systemic disorder associated with an increase in left ventricular mass and premature death and disability from cardiovascular disease. Although bariatric surgery reverses many of the hormonal and hemodynamic derangements, the long-term collective effects on body composition and left ventricular mass have not been considered before. We hypothesized that the decrease in fat mass and lean mass after weight loss surgery is associated with a decrease in left ventricular mass. METHODS: Fifteen severely obese women (mean body mass index [BMI]: 46.7+/-1.7 kg/m(2)) with medically controlled hypertension underwent bariatric surgery. Left ventricular mass and plasma markers of systemic metabolism, together with body mass index (BMI), waist and hip circumferences, body composition (fat mass and lean mass), and resting energy expenditure were measured at 0, 3, 9, 12, and 24 months. RESULTS: Left ventricular mass continued to decrease linearly over the entire period of observation, while rates of weight loss, loss of lean mass, loss of fat mass, and resting energy expenditure all plateaued at 9 [corrected] months (P <.001 for all). Parameters of systemic metabolism normalized by 9 months, and showed no further change at 24 months after surgery. CONCLUSIONS: Even though parameters of obesity, including BMI and body composition, plateau, the benefits of bariatric surgery on systemic metabolism and left ventricular mass are sustained. We propose that the progressive decrease of left ventricular mass after weight loss surgery is regulated by neurohumoral factors, and may contribute to improved long-term survival.
Resumo:
Due to the clinical success of left ventricular assist devices (LVADs) used for short term "bridge to transplant" and the limited availability of donor organs, heart assist devices are being considered for long term implantation as an alternative to heart transplantation. In an effort to improve biocompatibility, a nonthrombogenic cellular lining was developed from genetically engineered smooth muscle cells (GE-SMC) for the Thermocardiosystems Heartmate$\sp{\rm TM}$ LVAD. SMCs have been transduced with the genes for endothelial nitric oxide synthase (NOS III) and GTP cyclohydrolase (GTPCH) with subsequent stable expression of the NOS III protein via an Epstein Barr based DNA expression vector. Transduced SMCs produce nitric oxide at concentrations that reduce platelet deposition and smooth muscle cell proliferation when tested in vitro. In addition, the adhesive capabilities of GE-SMC linings were also examined, and optimized in physical environments mimicking typical in vivo LVAD operation. Preliminary investigations examining cell adhesion during constant shear stress exposure demonstrated an acute phase of cell loss corresponding to cytoskeletal F-actin rearrangement. Subsequently, an in vitro circulatory loop was designed to expose cell lined LVADs to in vivo operating conditions. Cumulative cell loss from cell lined LVADs was less than 10% after 24 hours of flow. Using a protocol for "preconditioning" the cell lining within the mock circulatory loop, the first implantation of an LVAD containing a genetically engineered SMC lining was successfully implemented in a bovine model. Results from this 24 hour study indicate that the flow-conditioned cellular lining remained intact with no evidence of thromboembolization and only minimal changes in coagulation studies. ^
Resumo:
Left ventricular mass (LVM) is a strong predictor of cardiovascular disease (CVD) in adults. However, normal growth of LVM in healthy children is not well understood, and previous results on independent effects of body size and body fatness on LVM have been inconsistent. The purpose of this study was (1) to establish the normal growth curve of LVM from age 8 to age 18, and evaluate the determinants of change in LVM with age, and (2) to assess the independent effects of body size and body fatness on LVM.^ In Project HeartBeat!, 678 healthy children aged 8, 11 and 14 years at baseline were enrolled and examined at 4-monthly intervals for up to 4 years. A synthetic cohort with continuous observations from age 8 to 18 years was constructed. A total of 4608 LVM measurements was made from M-mode echocardiography. The multilevel linear model was used for analysis.^ Sex-specific trajectories of normal growth of LVM from age 8 to 18 was displayed. On average, LVM was 15 g higher in males than females. Average LVM increased linearly in males from 78 g at age 8 to 145 g at age 18. For females, the trajectory was curvilinear, nearly constant after age 14. No significant racial differences were found. After adjustment for the effects of body size and body fatness, average LVM decreased slightly from age 8 to 18, and sex differences in changes of LVM remained constant.^ The impact of body size on LVM was examined by adding to a basic LVM-sex-age model one of 9 body size indicators. The impact of body fatness was tested by further introducing into each of the 9 LVM models (with one or another of the body size indicators) one of 4 body fatness indicators, yielding 36 models with different body size and body fatness combinations. The results indicated that effects of body size on LVM can be distinguished between fat-free body mass and fat body mass, both being independent, positive predictors. The former is the stronger determinant. When a non-fat-free body size indicator is used as predictor, the estimated residual effect of body fatness on LVM becomes negative. ^
DIGITAL BOUNDARY DETECTION, VOLUMETRIC AND WALL MOTION ANALYSIS OF LEFT VENTRICULAR CINE ANGIOGRAMS.
Resumo:
AIMS Heart failure with preserved ejection fraction (HFpEF) has a different pathophysiological background compared to heart failure with reduced ejection fraction (HFrEF). Tailored risk prediction in this separate heart failure group with a high mortality rate is of major importance. Inflammation may play an important role in the pathogenesis of HFpEF because of its significant contribution to myocardial fibrosis. We therefore aimed to assess the predictive value of C-reactive protein (CRP) in patients with HFpEF. METHODS AND RESULTS Plasma levels of CRP were determined in 459 patients with HFpEF in the LUdwigshafen Risk and Cardiovascular Health (LURIC) study using a high-sensitivity assay. During a median follow-up of 9.7 years 40% of these patients died. CRP predicted all-cause mortality with an adjusted hazard ratio (HR) of 1.20 [95% confidence interval (CI) 1.02-1.40, P = 0.018] and cardiovascular mortality with a HR of 1.32 (95% CI 1.08-1.62, P = 0.005) per increase of one standard deviation. CRP was a significantly stronger mortality predictor in HFpEF patients than in a control group of 522 HFrEF patients (for interaction, P = 0.015). Furthermore, CRP added prognostic value to N-terminal pro B-type natriuretic peptide (Nt-proBNP): the lowest 5-year mortality rate of 6.8% was observed for patients in the lowest tertile of Nt-proBNP as well as CRP. The mortality risk peaked in the group combining the highest values of Nt-proBNP and CRP with a 5-year rate of 36.5%. CONCLUSION It was found that CRP was an independent and strong predictor of mortality in HFpEF. This observation may reflect immunological processes with an adverse impact on the course of HFpEF.
Resumo:
Aims: We sought to analyse local distribution of aortic annulus and left ventricular outflow tract (LVOT) calcification in patients undergoing transcatheter aortic valve replacement (TAVR) and its impact on aortic regurgitation (AR) immediately after device placement. Methods and results: A group of 177 patients with severe aortic stenosis undergoing multislice computed tomography of the aortic root followed by TAVR were enrolled in this single-centre study. Annular and LVOT calcifications were assessed per cusp using a semi-quantitative grading system (0: none; 1 [mild]: small, non-protruding calcifications; 2 [moderate]: protruding [>1 mm] or extensive [>50% of cusp sector] calcifications; 3 [severe]: protruding and extensive calcifications). Any calcification of the annulus or LVOT was present in 107 (61%) and 63 (36%) patients, respectively. Prevalence of annulus/LVOT calcifications in the left coronary cusp was 42% and 25%, respectively, in the non-coronary cusp 28% and 13%, in the right coronary cusp 13% and 5%. AR grade 2 to 4 assessed by the method of Sellers immediately after TAVR device implantation was observed in 55 patients (31%). Multivariate regression analysis revealed that the overall annulus calcification (OR [95% CI] 1.48 [1.10-2.00]; p=0.0106), the overall LVOT calcification (1.93 [1.26-2.96]; p=0.0026), any moderate or severe LVOT calcification (5.37 [1.52-18.99]; p=0.0092), and asymmetric LVOT calcification were independent predictors of AR. Conclusions: Calcifications of the aortic annulus and LVOT are frequent in patients undergoing TAVR, and both the distribution and the severity of calcifications appear to be independent predictors of aortic regurgitation after device implantation. - See more at: http://www.pcronline.com/eurointervention/77th_issue/126/#sthash.Hzodgju5.dpuf
Resumo:
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) represents a growing health burden associated with substantial mortality and morbidity. Consequently, risk prediction is of highest importance. Endothelial dysfunction has been recently shown to play an important role in the complex pathophysiology of HFpEF. We therefore aimed to assess von Willebrand factor (vWF), a marker of endothelial damage, as potential biomarker for risk assessment in patients with HFpEF. METHODS AND RESULTS Concentrations of vWF were assessed in 457 patients with HFpEF enrolled as part of the LUdwigshafen Risk and Cardiovascular Health (LURIC) study. All-cause mortality was observed in 40% of patients during a median follow-up time of 9.7 years. vWF significantly predicted mortality with a hazard ratio (HR) per increase of 1 SD of 1.45 (95% confidence interval, 1.26-1.68; P<0.001) and remained a significant predictor after adjustment for age, sex, body mass index, N-terminal pro-B-type natriuretic peptide (NT-proBNP), renal function, and frequent HFpEF-related comorbidities (adjusted HR per 1 SD, 1.22; 95% confidence interval, 1.05-1.42; P=0.001). Most notably, vWF showed additional prognostic value beyond that achievable with NT-proBNP indicated by improvements in C-Statistic (vWF×NT-proBNP: 0.65 versus NT-proBNP: 0.63; P for comparison, 0.004) and category-free net reclassification index (37.6%; P<0.001). CONCLUSIONS vWF is an independent predictor of long-term outcome in patients with HFpEF, which is in line with endothelial dysfunction as potential mediator in the pathophysiology of HFpEF. In particular, combined assessment of vWF and NT-proBNP improved risk prediction in this vulnerable group of patients.
Resumo:
OBJECTIVE Obtaining new details of radial motion of left ventricular (LV) segments using velocity-encoding cardiac MRI. METHODS Cardiac MR examinations were performed on 14 healthy volunteers aged between 19 and 26 years. Cine images for navigator-gated phase contrast velocity mapping were acquired using a black blood segmented κ-space spoiled gradient echo sequence with a temporal resolution of 13.8 ms. Peak systolic and diastolic radial velocities as well as radial velocity curves were obtained for 16 ventricular segments. RESULTS Significant differences among peak radial velocities of basal and mid-ventricular segments have been recorded. Particular patterns of segmental radial velocity curves were also noted. An additional wave of outward radial movement during the phase of rapid ventricular filling, corresponding to the expected timing of the third heart sound, appeared of particular interest. CONCLUSION The technique has allowed visualization of new details of LV radial wall motion. In particular, higher peak systolic radial velocities of anterior and inferior segments are suggestive of a relatively higher dynamics of anteroposterior vs lateral radial motion in systole. Specific patterns of radial motion of other LV segments may provide additional insights into LV mechanics. ADVANCES IN KNOWLEDGE The outward radial movement of LV segments impacted by the blood flow during rapid ventricular filling provides a potential substrate for the third heart sound. A biphasic radial expansion of the basal anteroseptal segment in early diastole is likely to be related to the simultaneous longitudinal LV displacement by the stretched great vessels following repolarization and their close apposition to this segment.
Resumo:
OBJECTIVE In patients with aortic stenosis, left ventricular systolic torsion (pT) is increased to overcome excessive afterload. This study assessed left ventricular torsion before and immediately after surgical valve replacement and tested the instant effect of fluid loading. DESIGN Prospective, clinical single-center study. SETTING Intensive care unit of a university hospital. PARTICIPANTS 12 patients undergoing elective aortic valve replacement for aortic stenosis. INTERVENTIONS Echocardiography was performed on the day before surgery, within 18 hours after surgery including a fluid challenge, and after 2.5 years. MEASUREMENTS AND MAIN RESULTS pT decreased early postoperatively by 21.2% (23.4° ± 5.6° to 18.4° ± 6.9°; p = 0.012) and reached preoperative values at 2.5 years follow-up (24 ± 7). Peak diastolic untwisting velocity occurred later early postoperatively (13% ± 8% to 21% ± 9.4%; p = 0.019) and returned toward preoperative values at follow-up (10.2 ± 4.7°). The fluid challenge increased central venous pressure (8 ± 4 mmHg to 11 ± 4 mmHg; p = 0.003) and reduced peak systolic torsion velocity (138.7 ± 37.6/s to 121.3 ± 32/s; p = 0.032). pT decreased in 3 and increased in 8 patients after fluid loading. Patients whose pT increased had higher early mitral inflow velocity postoperatively (p = 0.04) than those with decreasing pT. Patients with reduced pT after fluid loading received more fluids (p = 0.04) and had a higher positive fluid balance during the intensive care unit stay (p = 0.03). Torsion after fluid loading correlated with total fluid input (p = 0.001) and cumulative fluid balance (p = 0.002). CONCLUSIONS pT decreased early after aortic valve replacement but remained elevated despite elimination of aortic stenosis. After 2.5 years, torsion had returned to preoperative levels.
Resumo:
OBJECTIVES Left ventricular assist devices are an important treatment option for patients with heart failure alter the hemodynamics in the heart and great vessels. Because in vivo magnetic resonance studies of patients with ventricular assist devices are not possible, in vitro models represent an important tool to investigate flow alterations caused by these systems. By using an in vitro magnetic resonance-compatible model that mimics physiologic conditions as close as possible, this work investigated the flow characteristics using 4-dimensional flow-sensitive magnetic resonance imaging of a left ventricular assist device with outflow via the right subclavian artery as commonly used in cardiothoracic surgery in the recent past. METHODS An in vitro model was developed consisting of an aorta with its supra-aortic branches connected to a left ventricular assist device simulating the pulsatile flow of the native failing heart. A second left ventricular assist device supplied the aorta with continuous flow via the right subclavian artery. Four-dimensional flow-sensitive magnetic resonance imaging was performed for different flow rates of the left ventricular assist device simulating the native heart and the left ventricular assist device providing the continuous flow. Flow characteristics were qualitatively and quantitatively evaluated in the entire vessel system. RESULTS Flow characteristics inside the aorta and its upper branching vessels revealed that the right subclavian artery and the right carotid artery were solely supported by the continuous-flow left ventricular assist device for all flow rates. The flow rates in the brain-supplying arteries are only marginally affected by different operating conditions. The qualitative analysis revealed only minor effects on the flow characteristics, such as weakly pronounced vortex flow caused by the retrograde flow via the brachiocephalic artery. CONCLUSIONS The results indicate that, despite the massive alterations in natural hemodynamics due to the retrograde flow via the right subclavian and brachiocephalic arteries, there are no drastic consequences on the flow in the brain-feeding arteries and the flow characteristics in the ascending and descending aortas. It may be beneficial to adjust the operating condition of the left ventricular assist device to the residual function of the failing heart.