704 resultados para Learning support class


Relevância:

40.00% 40.00%

Publicador:

Resumo:

There is evidence that students benefit from teachers’ explicit fostering of metacognitive strategy knowledge (MSK). However, there is insufficient understanding about the effect of implicit promotion of MSK in regular school instruction. This study investigates the relationship between perceived characteristics of learning environments (social climate, support, autonomy, self-reflection) and students’ MSK. A representative cohort of students (Nt1 = 1,272/Nt2 = 1,126) in Grades 10 and 11 at schools at the upper secondary education level (ISCED Level 3A) in Switzerland participated in this two-wave longitudinal study. Multilevel analysis showed effects on both the individual and the class level. Students who experienced higher social integration showed a higher extent of MSK at the beginning of the school year than students who experienced less social integration. Perceived autonomy was also positively related to students’ MSK on the individual level. In contrast, the results showed a negative relationship between perceived self-reflection and students’ MSK. On the class level, there was a negative relationship between self-reflection and students’ MSK. Teachers’ support did not correlate with students’ MSK on either the individual or the class level. Implications of these results for education and further studies are discussed. (DIPF/Orig.)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The "Learning together, growing with family" programme is targeted to at-risk parents and children from 6 to 11 years old, with a preventive focus on promoting positive parent-child relationships. In this study, we examined the quality of the programme implementation and its influence on the programme results in a sample of 425 parents and 138 facilitators drawn from the first trial. Mixed methods were used, consisting of: parental self-reports on parenting dimensions, professionals' records on parental attendance and appraisals on six topics of the implementation process, and focus group discussions in which facilitators reported on the initial steps of the implementation. Results showed a high quality of implementation with respect to the group facilitator and the programme organization factors, followed by the coordination with services and the support facilities offered to participants and, finally, by the factors of fidelity and prior organization steps. Results of the focus groups confirmed that the prior steps were challenging and offered the more effective strategies. Better quality in the implementation factors predicted better parenting styles and parental competencies after the programme, as well as a higher attendance rate. In sum, this study demonstrates the importance of good implementation in at-risk contexts and provides some clues as to the key elements that moderate programme effectiveness.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this thesis, we will explore approaches to faculty instructional change in astronomy and physics. We primarily focus on professional development (PD) workshops, which are a central mechanism used within our community to help faculty improve their teaching. Although workshops serve a critical role for promoting more equitable instruction, we rarely assess them through careful consideration of how they engage faculty. To encourage a shift towards more reflective, research-informed PD, we developed the Real-Time Professional Development Observation Tool (R-PDOT), to document the form and focus of faculty's engagement during workshops. We then analyze video-recordings of faculty's interactions during the Physics and Astronomy New Faculty Workshop, focusing on instances where faculty might engage in pedagogical sense-making. Finally, we consider insights gained from our own local, team-based effort to improve a course sequence for astronomy majors. We conclude with recommendations for PD leaders and researchers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Finnish youth are constantly exposed to music and lyrics in English in their free time. It is likely that this has a positive effect on vocabulary learning. Learning vocabulary while simultaneously accompanied with melodies is likely to result in better learning outcomes. The present thesis covers a study on the vocabulary learning of traditional and music class ninth graders in a south-western upper comprehensive school in Finland, mainly concentrating on vocabulary learning as a by-product of listening to pop music and learning vocabulary through semantic priming. The theoretical background presents viable linguistic arguments and theories, which provide clarity for why it would be possible to learn English vocabulary via listening to pop songs. There is conflicting evidence on the benefits of music on vocabulary learning, and this thesis sets out to shed light on the situation. Additionally, incorporating pop music in English classes could assist in decreasing the gap between real world English and school English. The thesis is a mixed method research study consisting of both quantitative and qualitative research materials. The methodology comprises vocabulary tests both before and after pop music samples and a background questionnaire filled by students. According to the results, all students reported liking listening to music and they clearly listened to English pop music the most. A statistically significant difference was found when analysing the results of the differences in pre- and post-vocabulary tests. However, the traditional class appeared to listen to mainstream pop music more than the students in the music class, and thus it seems likely that the traditional class benefited more from vocabulary learning occurring via listening to pop songs. In conclusion, it can be established that it is possible to learn English vocabulary via listening to pop songs and that students wish their English lectures would involve more music-related vocabulary exercises in the future. Thus, when it comes to school learning, pop songs should be utilised in vocabulary learning, which could also in turn result in more diverse learning and the students could, more easily than before, relate to the themes and topics of the lectures. Furthermore, with the help of pop songs it would be possible to decrease the gap between school English and real-world English.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dissertation starts by providing a description of the phenomena related to the increasing importance recently acquired by satellite applications. The spread of such technology comes with implications, such as an increase in maintenance cost, from which derives the interest in developing advanced techniques that favor an augmented autonomy of spacecrafts in health monitoring. Machine learning techniques are widely employed to lay a foundation for effective systems specialized in fault detection by examining telemetry data. Telemetry consists of a considerable amount of information; therefore, the adopted algorithms must be able to handle multivariate data while facing the limitations imposed by on-board hardware features. In the framework of outlier detection, the dissertation addresses the topic of unsupervised machine learning methods. In the unsupervised scenario, lack of prior knowledge of the data behavior is assumed. In the specific, two models are brought to attention, namely Local Outlier Factor and One-Class Support Vector Machines. Their performances are compared in terms of both the achieved prediction accuracy and the equivalent computational cost. Both models are trained and tested upon the same sets of time series data in a variety of settings, finalized at gaining insights on the effect of the increase in dimensionality. The obtained results allow to claim that both models, combined with a proper tuning of their characteristic parameters, successfully comply with the role of outlier detectors in multivariate time series data. Nevertheless, under this specific context, Local Outlier Factor results to be outperforming One-Class SVM, in that it proves to be more stable over a wider range of input parameter values. This property is especially valuable in unsupervised learning since it suggests that the model is keen to adapting to unforeseen patterns.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The study of random probability measures is a lively research topic that has attracted interest from different fields in recent years. In this thesis, we consider random probability measures in the context of Bayesian nonparametrics, where the law of a random probability measure is used as prior distribution, and in the context of distributional data analysis, where the goal is to perform inference given avsample from the law of a random probability measure. The contributions contained in this thesis can be subdivided according to three different topics: (i) the use of almost surely discrete repulsive random measures (i.e., whose support points are well separated) for Bayesian model-based clustering, (ii) the proposal of new laws for collections of random probability measures for Bayesian density estimation of partially exchangeable data subdivided into different groups, and (iii) the study of principal component analysis and regression models for probability distributions seen as elements of the 2-Wasserstein space. Specifically, for point (i) above we propose an efficient Markov chain Monte Carlo algorithm for posterior inference, which sidesteps the need of split-merge reversible jump moves typically associated with poor performance, we propose a model for clustering high-dimensional data by introducing a novel class of anisotropic determinantal point processes, and study the distributional properties of the repulsive measures, shedding light on important theoretical results which enable more principled prior elicitation and more efficient posterior simulation algorithms. For point (ii) above, we consider several models suitable for clustering homogeneous populations, inducing spatial dependence across groups of data, extracting the characteristic traits common to all the data-groups, and propose a novel vector autoregressive model to study of growth curves of Singaporean kids. Finally, for point (iii), we propose a novel class of projected statistical methods for distributional data analysis for measures on the real line and on the unit-circle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main objective of my thesis work is to exploit the Google native and open-source platform Kubeflow, specifically using Kubeflow pipelines, to execute a Federated Learning scalable ML process in a 5G-like and simplified test architecture hosting a Kubernetes cluster and apply the largely adopted FedAVG algorithm and FedProx its optimization empowered by the ML platform ‘s abilities to ease the development and production cycle of this specific FL process. FL algorithms are more are and more promising and adopted both in Cloud application development and 5G communication enhancement through data coming from the monitoring of the underlying telco infrastructure and execution of training and data aggregation at edge nodes to optimize the global model of the algorithm ( that could be used for example for resource provisioning to reach an agreed QoS for the underlying network slice) and after a study and a research over the available papers and scientific articles related to FL with the help of the CTTC that suggests me to study and use Kubeflow to bear the algorithm we found out that this approach for the whole FL cycle deployment was not documented and may be interesting to investigate more in depth. This study may lead to prove the efficiency of the Kubeflow platform itself for this need of development of new FL algorithms that will support new Applications and especially test the FedAVG algorithm performances in a simulated client to cloud communication using a MNIST dataset for FL as benchmark.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The emissions estimation, both during homologation and standard driving, is one of the new challenges that automotive industries have to face. The new European and American regulation will allow a lower and lower quantity of Carbon Monoxide emission and will require that all the vehicles have to be able to monitor their own pollutants production. Since numerical models are too computationally expensive and approximated, new solutions based on Machine Learning are replacing standard techniques. In this project we considered a real V12 Internal Combustion Engine to propose a novel approach pushing Random Forests to generate meaningful prediction also in extreme cases (extrapolation, very high frequency peaks, noisy instrumentation etc.). The present work proposes also a data preprocessing pipeline for strongly unbalanced datasets and a reinterpretation of the regression problem as a classification problem in a logarithmic quantized domain. Results have been evaluated for two different models representing a pure interpolation scenario (more standard) and an extrapolation scenario, to test the out of bounds robustness of the model. The employed metrics take into account different aspects which can affect the homologation procedure, so the final analysis will focus on combining all the specific performances together to obtain the overall conclusions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: To evaluate the sensitivity and specificity of machine learning classifiers (MLCs) for glaucoma diagnosis using Spectral Domain OCT (SD-OCT) and standard automated perimetry (SAP). METHODS: Observational cross-sectional study. Sixty two glaucoma patients and 48 healthy individuals were included. All patients underwent a complete ophthalmologic examination, achromatic standard automated perimetry (SAP) and retinal nerve fiber layer (RNFL) imaging with SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec Inc., Dublin, California). Receiver operating characteristic (ROC) curves were obtained for all SD-OCT parameters and global indices of SAP. Subsequently, the following MLCs were tested using parameters from the SD-OCT and SAP: Bagging (BAG), Naive-Bayes (NB), Multilayer Perceptron (MLP), Radial Basis Function (RBF), Random Forest (RAN), Ensemble Selection (ENS), Classification Tree (CTREE), Ada Boost M1(ADA),Support Vector Machine Linear (SVML) and Support Vector Machine Gaussian (SVMG). Areas under the receiver operating characteristic curves (aROC) obtained for isolated SAP and OCT parameters were compared with MLCs using OCT+SAP data. RESULTS: Combining OCT and SAP data, MLCs' aROCs varied from 0.777(CTREE) to 0.946 (RAN).The best OCT+SAP aROC obtained with RAN (0.946) was significantly larger the best single OCT parameter (p<0.05), but was not significantly different from the aROC obtained with the best single SAP parameter (p=0.19). CONCLUSION: Machine learning classifiers trained on OCT and SAP data can successfully discriminate between healthy and glaucomatous eyes. The combination of OCT and SAP measurements improved the diagnostic accuracy compared with OCT data alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Learning Object (OA) is any digital resource that can be reused to support learning with specific functions and objectives. The OA specifications are commonly offered in SCORM model without considering activities in groups. This deficiency was overcome by the solution presented in this paper. This work specified OA for e-learning activities in groups based on SCORM model. This solution allows the creation of dynamic objects which include content and software resources for the collaborative learning processes. That results in a generalization of the OA definition, and in a contribution with e-learning specifications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a framework for detection of human skin in digital images is proposed. This framework is composed of a training phase and a detection phase. A skin class model is learned during the training phase by processing several training images in a hybrid and incremental fuzzy learning scheme. This scheme combines unsupervised-and supervised-learning: unsupervised, by fuzzy clustering, to obtain clusters of color groups from training images; and supervised to select groups that represent skin color. At the end of the training phase, aggregation operators are used to provide combinations of selected groups into a skin model. In the detection phase, the learned skin model is used to detect human skin in an efficient way. Experimental results show robust and accurate human skin detection performed by the proposed framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When English-learning children begin using words the majority of their early utterances (around 80%) are nouns. Compared to nouns, there is a paucity of verbs or non-verb relational words, such as 'up' meaning 'pick me up'. The primary explanations to account for these differences in use either argue in support of a 'cognitive account', which claims that verbs entail more cognitive complexity than nouns, or they provide evidence challenging this account. In this paper I propose an additional explanation for children's noun/verb asymmetry. Presenting a 'multi-modal account' of word-learning based on children's gesture and word combinations, I show that at the one-word stage English-learning children use gestures to express verb-like elements which leaves their words free to express noun-like elements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sophisticated style of mentoring has been found to be essential to support engineering student teams undertaking technically demanding, real-world problems as part of a Project-Centred Curriculum (PCC) at The University of Queensland. The term ‘triple-objective’ mentoring was coined to define mentoring that addresses not only the student’s technical goal achievement but also their time and team management. This is achieved through a number of formal mentor meetings that are informed by a confidential instrument which requires students to individually reflect on team processes prior to the meeting, and a checklist of technical requirements against which the interim student team progress and achievements are assessed. Triple-objective mentoring requires significant time input and coordination by the academic but has been shown to ensure effective student team work and learning undiminished by team dysfunction. Student feedback shows they value the process and agree that the tools developed to support the process are effective in developing and assessing team work and skills with average scores mostly above 3 on a four point scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent research has begun to provide support for the assumptions that memories are stored as a composite and are accessed in parallel (Tehan & Humphreys, 1998). New predictions derived from these assumptions and from the Chappell and Humphreys (1994) implementation of these assumptions were tested. In three experiments, subjects studied relatively short lists of words. Some of the Lists contained two similar targets (thief and theft) or two dissimilar targets (thief and steal) associated with the same cue (ROBBERY). AS predicted, target similarity affected performance in cued recall but not free association. Contrary to predictions, two spaced presentations of a target did not improve performance in free association. Two additional experiments confirmed and extended this finding. Several alternative explanations for the target similarity effect, which incorporate assumptions about separate representations and sequential search, are rejected. The importance of the finding that, in at least one implicit memory paradigm, repetition does not improve performance is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fear-relevant stimuli, such as snakes, spiders and heights, preferentially capture attention as compared to nonfear-relevant stimuli. This is said to reflect an encapsulated mechanism whereby attention is captured by the simple perceptual features of stimuli that have evolutionary significance. Research, using pictures of snakes and spiders, has found some support for this account; however, participants may have had prior fear of snakes and spiders that influenced results. The current research compared responses of snake and spider experts who had little fear of snakes and spiders, and control participants across a series of affective priming and visual search tasks. Experts discriminated between dangerous and nondangerous snakes and spiders, and expert responses to pictures of nondangerous snakes and spiders differed from those of control participants. The current results dispute that stimulus fear relevance is based purely on perceptual features, and provides support for the role of learning and experience.