924 resultados para Learning objects repositories
Resumo:
It has been proposed that spatial reference frames with which object locations are specified in memory are intrinsic to a to-be-remembered spatial layout (intrinsic reference theory). Although this theory has been supported by accumulating evidence, it has only been collected from paradigms in which the entire spatial layout was simultaneously visible to observers. The present study was designed to examine the generality of the theory by investigating whether the geometric structure of a spatial layout (bilateral symmetry) influences selection of spatial reference frames when object locations are sequentially learned through haptic exploration. In two experiments, participants learned the spatial layout solely by touch and performed judgments of relative direction among objects using their spatial memories. Results indicated that the geometric structure can provide a spatial cue for establishing reference frames as long as it is accentuated by explicit instructions (Experiment 1) or alignment with an egocentric orientation (Experiment 2). These results are entirely consistent with those from previous studies in which spatial information was encoded through simultaneous viewing of all object locations, suggesting that the intrinsic reference theory is not specific to a type of spatial memory acquired by the particular learning method but instead generalizes to spatial memories learned through a variety of encoding conditions. In particular, the present findings suggest that spatial memories that follow the intrinsic reference theory function equivalently regardless of the modality in which spatial information is encoded.
Resumo:
The loss of peripheral vision impairs spatial learning and navigation. However, the mechanisms underlying these impairments remain poorly understood. One advantage of having peripheral vision is that objects in an environment are easily detected and readily foveated via eye movements. The present study examined this potential benefit of peripheral vision by investigating whether competent performance in spatial learning requires effective eye movements. In Experiment 1, participants learned room-sized spatial layouts with or without restriction on direct eye movements to objects. Eye movements were restricted by having participants view the objects through small apertures in front of their eyes. Results showed that impeding effective eye movements made subsequent retrieval of spatial memory slower and less accurate. The small apertures also occluded much of the environmental surroundings, but the importance of this kind of occlusion was ruled out in Experiment 2 by showing that participants exhibited intact learning of the same spatial layouts when luminescent objects were viewed in an otherwise dark room. Together, these findings suggest that one of the roles of peripheral vision in spatial learning is to guide eye movements, highlighting the importance of spatial information derived from eye movements for learning environmental layouts.
Resumo:
We investigated memories of room-sized spatial layouts learned by sequentially or simultaneously viewing objects from a stationary position. In three experiments, sequential viewing (one or two objects at a time) yielded subsequent memory performance that was equivalent or superior to simultaneous viewing of all objects, even though sequential viewing lacked direct access to the entire layout. This finding was replicated by replacing sequential viewing with directed viewing in which all objects were presented simultaneously and participants’ attention was externally focused on each object sequentially, indicating that the advantage of sequential viewing over simultaneous viewing may have originated from focal attention to individual object locations. These results suggest that memory representation of object-to-object relations can be constructed efficiently by encoding each object location separately, when those locations are defined within a single spatial reference system. These findings highlight the importance of considering object presentation procedures when studying spatial learning mechanisms.
Resumo:
Objects in an environment are often encountered sequentially during spatial learning, forming a path along which object locations are experienced. The present study investigated the effect of spatial information conveyed through the path in visual and proprioceptive learning of a room-sized spatial layout, exploring whether different modalities differentially depend on the integrity of the path. Learning object locations along a coherent path was compared with learning them in a spatially random manner. Path integrity had little effect on visual learning, whereas learning with the coherent path produced better memory performance than random order learning for proprioceptive learning. These results suggest that path information has differential effects in visual and proprioceptive spatial learning, perhaps due to a difference in the way one establishes a reference frame for representing relative locations of objects.
Resumo:
"Eventually everything connects—people, ideas, objects. The quality of the connections is the key toquality per se.” (Charles Eames) On 8 November, 2007, in a moment charged with serendipity, an Exhibition titled ‘The Gifted Eye of Charles Eames—A Portfolio of 100 images’ was opened exclusively to Brisbane. The Artisan Gallery in Fortitude Valley became the launch point for an international orbit of Fringe locations hosting one of 18 sets of 100 images each...
Resumo:
Most previous work on artificial curiosity (AC) and intrinsic motivation focuses on basic concepts and theory. Experimental results are generally limited to toy scenarios, such as navigation in a simulated maze, or control of a simple mechanical system with one or two degrees of freedom. To study AC in a more realistic setting, we embody a curious agent in the complex iCub humanoid robot. Our novel reinforcement learning (RL) framework consists of a state-of-the-art, low-level, reactive control layer, which controls the iCub while respecting constraints, and a high-level curious agent, which explores the iCub's state-action space through information gain maximization, learning a world model from experience, controlling the actual iCub hardware in real-time. To the best of our knowledge, this is the first ever embodied, curious agent for real-time motion planning on a humanoid. We demonstrate that it can learn compact Markov models to represent large regions of the iCub's configuration space, and that the iCub explores intelligently, showing interest in its physical constraints as well as in objects it finds in its environment.
Resumo:
It is now widely acknowledged that student mental well-being is a critical factor in the tertiary student learning experience and is important to student learning success. The issue of student mental well-being also has implications for effective student transition out of university and into the world of work. It is therefore vital that intentional strategies are adopted by universities both within the formal curriculum, and outside it, to promote student well-being and to work proactively and preventatively to avoid a decline in student psychological well-being. This paper describes how the Queensland University of Technology Law School is using animation to teach students about the importance for their learning success of the protection of their mental well-being. Mayer and Moreno (2002) define an animation as an external representation with three main characteristics: (1) it is a pictorial representation, (2) it depicts apparent movement, and (3) it consists of objects that are artificially created through drawing or some other modelling technique. Research into the effectiveness of animation as a tool for tertiary student learning engagement is relatively new and growing field of enquiry. Nash argues, for example, that animations provide a “rich, immersive environment [that] encourages action and interactivity, which overcome an often dehumanizing learning management system approach” (Nash, 2009, 25). Nicholas states that contemporary millennial students in universities today, have been immersed in animated multimedia since their birth and in fact need multimedia to learn and communicate effectively (2008). However, it has also been established, for example through the work of Lowe (2003, 2004, 2008) that animations can place additional perceptual, attentional, and cognitive demands on students that they are not always equipped to cope with. There are many different genres of animation. The dominant style of animation used in the university learning environment is expository animation. This approach is a useful tool for visualising dynamic processes and is used to support student understanding of subjects and themes that might otherwise be perceived as theoretically difficult and disengaging. It is also a form of animation that can be constructed to avoid any potential negative impact on cognitive load that the animated genre might have. However, the nature of expository animation has limitations for engaging students, and can present as clinical and static. For this reason, the project applied Kombartzky, Ploetzner, Schlag, and Metz’s (2010) cognitive strategy for effective student learning from expository animation, and developed a hybrid form of animation that takes advantage of the best elements of expository animation techniques along with more engaging short narrative techniques. First, the paper examines the existing literature on the use of animation in tertiary educational contexts. Second, the paper describes how animation was used at QUT Law School to teach students about the issue of mental well-being and its importance to their learning success. Finally, the paper analyses the potential of the use of animation, and of the cognitive strategy and animation approach trialled in the project, as a teaching tool for the promotion of student learning about the importance of mental well-being.
Resumo:
Non-governmental organisations (NGOs) have gained an important role in development co-operation during the last two decades. The development funding channelled through NGOs has increased and the number of NGOs engaged in development activities, both North and South, has been growing. Supporting NGOs has been seen as one way to strengthen civil society in the South and to provide potential for enhancing more effective development than the state, and to exercise participatory development and partnership in their North-South relationships. This study focuses on learning in the co-operation practices of small Finnish NGOs in Morogoro, Tanzania. Drawing on the cultural-historical activity theory and the theory of expansive learning, in this study I understand learning as a qualitative change in the actual co-operation practices. The qualitative change, for its part, emerges out of attempts to deal with the contradictions in the present activity. I use the concept of developmental contradiction in exploring the co-operation of the small Finnish NGOs with their Tanzanian counterparts. Developmental contradiction connects learning to actual practice and its historical development. By history, in this study I refer to multiple developmental trajectories, such as trajectories of individual participants, organisations, co-operation practices and the institutional system in which the NGO-development co-operation is embedded. In the empirical chapters I explore the co-operation both in the development co-operation projects and in micro-level interaction between partners taking place within the projects. I analyse the perceptions of the Finnish participants about the different developmental trajectories, the tensions, inclusions and exclusions in the evolving object of co-operation in one project, the construction of power relations in project meetings in three projects, and the collision of explicated partnership with the emerging practice of trusteeship in one project. On the basis of the empirical analyses I elaborate four developmental contradictions and learning challenges for the co-operation. The developmental contradictions include: 1) implementing a ready-made Finnish project idea vs. taking the current activities of Tanzanian NGO as a starting point; 2) gaining experiences and cultural interaction vs. access to outside funding; 3) promoting the official tools of development co-operation in training vs. use of tools and procedures taken from the prior activities of both partners in actual practice; and 4) asymmetric relations between the partners vs. rhetoric of equal partnership. Consequently, on the basis of developmental contradictions four learning challenges are suggested: a shift from legitimation of Finnish ideas to negotiation, transcending the separate objects and finding a partly joint object, developing locally shared tools for the co-operation, and identification and reflection of the power relations in the practice of co-operation. Keywords: activity theory; expansive learning; NGO development co-operation; partnership; power
Resumo:
The aim of the study was to analyze and facilitate collaborative design in a virtual learning environment (VLE). Discussions of virtual design in design education have typically focused on technological or communication issues, not on pedagogical issues. Yet in order to facilitate collaborative design, it is also necessary to address the pedagogical issues related to the virtual design process. In this study, the progressive inquiry model of collaborative designing was used to give a structural level of facilitation to students working in the VLE. According to this model, all aspects of inquiry, such as creating the design context, constructing a design idea, evaluating the idea, and searching for new information, can be shared in a design community. The study consists of three design projects: 1) designing clothes for premature babies, 2) designing conference bags for an international conference, and 3) designing tactile books for visually impaired children. These design projects constituted a continuum of design experiments, each of which highlighted certain perspectives on collaborative designing. The design experiments were organized so that the participants worked in design teams, both face-to-face and virtually. The first design experiment focused on peer collaboration among textile teacher students in the VLE. The second design experiment took into consideration end-users needs by using a participatory design approach. The third design experiment intensified computer-supported collaboration between students and domain experts. The virtual learning environments, in these design experiments, were designed to support knowledge-building pedagogy and progressive inquiry learning. These environments enabled a detailed recording of all computer-mediated interactions and data related to virtual designing. The data analysis was based on qualitative content analysis of design statements in the VLE. This study indicated four crucial issues concerning collaborative design in the VLE in craft and design education. Firstly, using the collaborative design process in craft and design education gives rise to special challenges of building learning communities, creating appropriate design tasks for them, and providing tools for collaborative activities. Secondly, the progressive inquiry model of collaborative designing can be used as a scaffold support for design thinking and for reflection on the design process. Thirdly, participation and distributed expertise can be facilitated by considering the key stakeholders who are related to the design task or design context, and getting them to participate in virtual designing. Fourthly, in the collaborative design process, it is important that team members create and improve visual and technical ideas together, not just agree or disagree about proposed ideas. Therefore, viewing the VLE as a medium for collaborative construction of the design objects appears crucial in order to understand and facilitate the complex processes in collaborative designing.
Resumo:
Relaxation labeling processes are a class of mechanisms that solve the problem of assigning labels to objects in a manner that is consistent with respect to some domain-specific constraints. We reformulate this using the model of a team of learning automata interacting with an environment or a high-level critic that gives noisy responses as to the consistency of a tentative labeling selected by the automata. This results in an iterative linear algorithm that is itself probabilistic. Using an explicit definition of consistency we give a complete analysis of this probabilistic relaxation process using weak convergence results for stochastic algorithms. Our model can accommodate a range of uncertainties in the compatibility functions. We prove a local convergence result and show that the point of convergence depends both on the initial labeling and the constraints. The algorithm is implementable in a highly parallel fashion.
Resumo:
Since 2007, close collaboration between the Learning and Teaching Unit’s Academic Quality and Standards team and the Department of Reporting and Analysis’ Business Objects team resulted in a generational approach to reporting where QUT established a place of trust. This place of trust is where data owners are confident in date storage, data integrity, reported and shared. While the role of the Department of Reporting and Analysis focused on the data warehouse, data security and publication of reports, the Academic Quality and Standards team focused on the application of learning analytics to solve academic research questions and improve student learning. Addressing questions such as: • Are all students who leave course ABC academically challenged? • Do the students who leave course XYZ stay within the faculty, university or leave? • When students withdraw from a unit do they stay enrolled on full or part load or leave? • If students enter through a particular pathway, what is their experience in comparison to other pathways? • With five years historic reporting, can a two-year predictive forecast provide any insight? In answering these questions, the Academic Quality and Standards team then developed prototype data visualisation through curriculum conversations with academic staff. Where these enquiries were applicable more broadly this information would be brought into the standardised reporting for the benefit of the whole institution. At QUT an annual report to the executive committees allows all stakeholders to record the performance and outcomes of all courses in a snapshot in time or use this live report at any point during the year. This approach to learning analytics was awarded the Awarded 2014 ATEM/Campus Review Best Practice Awards in Tertiary Education Management for The Unipromo Award for Excellence in Information Technology Management.
Resumo:
This dissertation empirically explores the relations among three theoretical perspectives: university students approaches to learning, self-regulated learning, as well as cognitive and attributional strategies. The relations were quantitatively studied from both variable- and person-centered perspectives. In addition, the meaning that students gave to their disciplinary choices was examined. The general research questions of the study were: 1) What kinds of relationships exist among approaches to learning, regulation of learning, and cognitive and attributional strategies? What kinds of cognitive-motivational profiles can be identified among university students, and how are such profiles related to study success and well-being? 3) How do university students explain their disciplinary choices? Four empirical studies addressed these questions. Studies I, II, and III were quantitative, applying self-report questionnaires, and Study IV was qualitative in nature. Study I explored relations among cognitive strategies, approaches to learning, regulation of learning, and study success by using correlations and a K-means cluster analysis. The participants were 366 students from various faculties at different phases of their studies. The results showed that all the measured constructs were logically related to each other in both variable- and person-centered approaches. Study II further examined what kinds of cognitive-motivational profiles could be identified among first-year university students (n=436) in arts, law, and agriculture and forestry. Differences in terms of study success, exhaustion, and stress among students with differing profiles were also looked at. By using a latent class cluster analysis (LCCA), three groups of students were identified: non-academic (34%), self-directed (35%), and helpless students (31%). Helpless students reported the highest levels of stress and exhaustion. Self-directed students received the highest grades. In Study III, cognitive-motivational profiles were identified among novice teacher students (n=213) using LCCA. Well-being, epistemological beliefs, and study success were looked at in relation to the profiles. Three groups of students were found: non-regulating (50%), self-directed (35%), and non-reflective (22%). Self-directed students again received the best grades. Non-regulating students reported the highest levels of stress and exhaustion, the lowest level of interest, and showed the strongest preference for certain and practical knowledge. Study IV, which was qualitative in nature, explored how first-year students (n = 536 ) in three fields of studies, arts, law, and veterinary medicine explained their disciplinary choices. Content analyses showed that interest appeared to be a common concept in students description of their choices across the three faculties. However, the objects of interest of the freshmen appeared rather unspecified. Veterinary medicine and law students most often referred to future work or a profession, whereas only one-fifth of the arts students did so. The dissertation showed that combining different theoretical perspectives and methodologies enabled us to build a rich picture of university students cognitive and motivational predispositions towards studying and learning. Further, cognitive-emotional aspects played a significant role in studying, not only in relation to study success, but also in terms of well-being. Keywords: approaches to learning, self-regulation, cognitive and attributional strategies, university students
Resumo:
Optical Coherence Tomography(OCT) is a popular, rapidly growing imaging technique with an increasing number of bio-medical applications due to its noninvasive nature. However, there are three major challenges in understanding and improving an OCT system: (1) Obtaining an OCT image is not easy. It either takes a real medical experiment or requires days of computer simulation. Without much data, it is difficult to study the physical processes underlying OCT imaging of different objects simply because there aren't many imaged objects. (2) Interpretation of an OCT image is also hard. This challenge is more profound than it appears. For instance, it would require a trained expert to tell from an OCT image of human skin whether there is a lesion or not. This is expensive in its own right, but even the expert cannot be sure about the exact size of the lesion or the width of the various skin layers. The take-away message is that analyzing an OCT image even from a high level would usually require a trained expert, and pixel-level interpretation is simply unrealistic. The reason is simple: we have OCT images but not their underlying ground-truth structure, so there is nothing to learn from. (3) The imaging depth of OCT is very limited (millimeter or sub-millimeter on human tissues). While OCT utilizes infrared light for illumination to stay noninvasive, the downside of this is that photons at such long wavelengths can only penetrate a limited depth into the tissue before getting back-scattered. To image a particular region of a tissue, photons first need to reach that region. As a result, OCT signals from deeper regions of the tissue are both weak (since few photons reached there) and distorted (due to multiple scatterings of the contributing photons). This fact alone makes OCT images very hard to interpret.
This thesis addresses the above challenges by successfully developing an advanced Monte Carlo simulation platform which is 10000 times faster than the state-of-the-art simulator in the literature, bringing down the simulation time from 360 hours to a single minute. This powerful simulation tool not only enables us to efficiently generate as many OCT images of objects with arbitrary structure and shape as we want on a common desktop computer, but it also provides us the underlying ground-truth of the simulated images at the same time because we dictate them at the beginning of the simulation. This is one of the key contributions of this thesis. What allows us to build such a powerful simulation tool includes a thorough understanding of the signal formation process, clever implementation of the importance sampling/photon splitting procedure, efficient use of a voxel-based mesh system in determining photon-mesh interception, and a parallel computation of different A-scans that consist a full OCT image, among other programming and mathematical tricks, which will be explained in detail later in the thesis.
Next we aim at the inverse problem: given an OCT image, predict/reconstruct its ground-truth structure on a pixel level. By solving this problem we would be able to interpret an OCT image completely and precisely without the help from a trained expert. It turns out that we can do much better. For simple structures we are able to reconstruct the ground-truth of an OCT image more than 98% correctly, and for more complicated structures (e.g., a multi-layered brain structure) we are looking at 93%. We achieved this through extensive uses of Machine Learning. The success of the Monte Carlo simulation already puts us in a great position by providing us with a great deal of data (effectively unlimited), in the form of (image, truth) pairs. Through a transformation of the high-dimensional response variable, we convert the learning task into a multi-output multi-class classification problem and a multi-output regression problem. We then build a hierarchy architecture of machine learning models (committee of experts) and train different parts of the architecture with specifically designed data sets. In prediction, an unseen OCT image first goes through a classification model to determine its structure (e.g., the number and the types of layers present in the image); then the image is handed to a regression model that is trained specifically for that particular structure to predict the length of the different layers and by doing so reconstruct the ground-truth of the image. We also demonstrate that ideas from Deep Learning can be useful to further improve the performance.
It is worth pointing out that solving the inverse problem automatically improves the imaging depth, since previously the lower half of an OCT image (i.e., greater depth) can be hardly seen but now becomes fully resolved. Interestingly, although OCT signals consisting the lower half of the image are weak, messy, and uninterpretable to human eyes, they still carry enough information which when fed into a well-trained machine learning model spits out precisely the true structure of the object being imaged. This is just another case where Artificial Intelligence (AI) outperforms human. To the best knowledge of the author, this thesis is not only a success but also the first attempt to reconstruct an OCT image at a pixel level. To even give a try on this kind of task, it would require fully annotated OCT images and a lot of them (hundreds or even thousands). This is clearly impossible without a powerful simulation tool like the one developed in this thesis.
Resumo:
Our ability to skillfully manipulate an object often involves the motor system learning to compensate for the dynamics of the object. When the two arms learn to manipulate a single object they can act cooperatively, whereas when they manipulate separate objects they control each object independently. We examined how learning transfers between these two bimanual contexts by applying force fields to the arms. In a coupled context, a single dynamic is shared between the arms, and in an uncoupled context separate dynamics are experienced independently by each arm. In a composition experiment, we found that when subjects had learned uncoupled force fields they were able to transfer to a coupled field that was the sum of the two fields. However, the contribution of each arm repartitioned over time so that, when they returned to the uncoupled fields, the error initially increased but rapidly reverted to the previous level. In a decomposition experiment, after subjects learned a coupled field, their error increased when exposed to uncoupled fields that were orthogonal components of the coupled field. However, when the coupled field was reintroduced, subjects rapidly readapted. These results suggest that the representations of dynamics for uncoupled and coupled contexts are partially independent. We found additional support for this hypothesis by showing significant learning of opposing curl fields when the context, coupled versus uncoupled, was alternated with the curl field direction. These results suggest that the motor system is able to use partially separate representations for dynamics of the two arms acting on a single object and two arms acting on separate objects.