881 resultados para Landmark-based spectral clustering
Resumo:
This paper presents an electricity medium voltage (MV) customer characterization framework supportedby knowledge discovery in database (KDD). The main idea is to identify typical load profiles (TLP) of MVconsumers and to develop a rule set for the automatic classification of new consumers. To achieve ourgoal a methodology is proposed consisting of several steps: data pre-processing; application of severalclustering algorithms to segment the daily load profiles; selection of the best partition, corresponding tothe best consumers’ segmentation, based on the assessments of several clustering validity indices; andfinally, a classification model is built based on the resulting clusters. To validate the proposed framework,a case study which includes a real database of MV consumers is performed.
Resumo:
In this paper we present the operational matrices of the left Caputo fractional derivative, right Caputo fractional derivative and Riemann–Liouville fractional integral for shifted Legendre polynomials. We develop an accurate numerical algorithm to solve the two-sided space–time fractional advection–dispersion equation (FADE) based on a spectral shifted Legendre tau (SLT) method in combination with the derived shifted Legendre operational matrices. The fractional derivatives are described in the Caputo sense. We propose a spectral SLT method, both in temporal and spatial discretizations for the two-sided space–time FADE. This technique reduces the two-sided space–time FADE to a system of algebraic equations that simplifies the problem. Numerical results carried out to confirm the spectral accuracy and efficiency of the proposed algorithm. By selecting relatively few Legendre polynomial degrees, we are able to get very accurate approximations, demonstrating the utility of the new approach over other numerical methods.
Resumo:
Recently, operational matrices were adapted for solving several kinds of fractional differential equations (FDEs). The use of numerical techniques in conjunction with operational matrices of some orthogonal polynomials, for the solution of FDEs on finite and infinite intervals, produced highly accurate solutions for such equations. This article discusses spectral techniques based on operational matrices of fractional derivatives and integrals for solving several kinds of linear and nonlinear FDEs. More precisely, we present the operational matrices of fractional derivatives and integrals, for several polynomials on bounded domains, such as the Legendre, Chebyshev, Jacobi and Bernstein polynomials, and we use them with different spectral techniques for solving the aforementioned equations on bounded domains. The operational matrices of fractional derivatives and integrals are also presented for orthogonal Laguerre and modified generalized Laguerre polynomials, and their use with numerical techniques for solving FDEs on a semi-infinite interval is discussed. Several examples are presented to illustrate the numerical and theoretical properties of various spectral techniques for solving FDEs on finite and semi-infinite intervals.
Resumo:
In this work an adaptive modeling and spectral estimation scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for speech enhancement. Both speech and noise signals are modeled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. The model parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The speech enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. This approach is particularly useful as a pre-processing module for parametric based speech recognition systems that rely on spectral time dependent models. The system performance has been evaluated by a set of human listeners and by spectral distances. In both cases the use of this pre-processing module has led to improved results.
Resumo:
In this work an adaptive filtering scheme based on a dual Discrete Kalman Filtering (DKF) is proposed for Hidden Markov Model (HMM) based speech synthesis quality enhancement. The objective is to improve signal smoothness across HMMs and their related states and to reduce artifacts due to acoustic model's limitations. Both speech and artifacts are modelled by an autoregressive structure which provides an underlying time frame dependency and improves time-frequency resolution. Themodel parameters are arranged to obtain a combined state-space model and are also used to calculate instantaneous power spectral density estimates. The quality enhancement is performed by a dual discrete Kalman filter that simultaneously gives estimates for the models and the signals. The system's performance has been evaluated using mean opinion score tests and the proposed technique has led to improved results.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.
Resumo:
Dissertation to Obtain Master Degree in Biomedical Engineering
Resumo:
Usually, data warehousing populating processes are data-oriented workflows composed by dozens of granular tasks that are responsible for the integration of data coming from different data sources. Specific subset of these tasks can be grouped on a collection together with their relationships in order to form higher- level constructs. Increasing task granularity allows for the generalization of processes, simplifying their views and providing methods to carry out expertise to new applications. Well-proven practices can be used to describe general solutions that use basic skeletons configured and instantiated according to a set of specific integration requirements. Patterns can be applied to ETL processes aiming to simplify not only a possible conceptual representation but also to reduce the gap that often exists between two design perspectives. In this paper, we demonstrate the feasibility and effectiveness of an ETL pattern-based approach using task clustering, analyzing a real world ETL scenario through the definitions of two commonly used clusters of tasks: a data lookup cluster and a data conciliation and integration cluster.
Resumo:
Propolis is a chemically complex biomass produced by honeybees (Apis mellifera) from plant resins added of salivary enzymes, beeswax, and pollen. The biological activities described for propolis were also identified for donor plants resin, but a big challenge for the standardization of the chemical composition and biological effects of propolis remains on a better understanding of the influence of seasonality on the chemical constituents of that raw material. Since propolis quality depends, among other variables, on the local flora which is strongly influenced by (a)biotic factors over the seasons, to unravel the harvest season effect on the propolis chemical profile is an issue of recognized importance. For that, fast, cheap, and robust analytical techniques seem to be the best choice for large scale quality control processes in the most demanding markets, e.g., human health applications. For that, UV-Visible (UV-Vis) scanning spectrophotometry of hydroalcoholic extracts (HE) of seventy-three propolis samples, collected over the seasons in 2014 (summer, spring, autumn, and winter) and 2015 (summer and autumn) in Southern Brazil was adopted. Further machine learning and chemometrics techniques were applied to the UV-Vis dataset aiming to gain insights as to the seasonality effect on the claimed chemical heterogeneity of propolis samples determined by changes in the flora of the geographic region under study. Descriptive and classification models were built following a chemometric approach, i.e. principal component analysis (PCA) and hierarchical clustering analysis (HCA) supported by scripts written in the R language. The UV-Vis profiles associated with chemometric analysis allowed identifying a typical pattern in propolis samples collected in the summer. Importantly, the discrimination based on PCA could be improved by using the dataset of the fingerprint region of phenolic compounds ( = 280-400m), suggesting that besides the biological activities of those secondary metabolites, they also play a relevant role for the discrimination and classification of that complex matrix through bioinformatics tools. Finally, a series of machine learning approaches, e.g., partial least square-discriminant analysis (PLS-DA), k-Nearest Neighbors (kNN), and Decision Trees showed to be complementary to PCA and HCA, allowing to obtain relevant information as to the sample discrimination.
Resumo:
The properties of surface plasmon-polaritons (SPPs) in graphene are discussed and several possible ways of coupling electromagnetic radiation in the terahertz (THz) spectral range to this type of surface waves are described: (i) the attenuated total reflection (ATR) method employing a prism, (ii) graphene-based gratings or graphene monolayers with modulated conductivity, (iii) a metal stripe on top of the graphene layer, and (iv) a nanoparticle located above it. Potentially interesting for applications SPP effects, such as switching, modulation and polarization of THz radiation, as well as its enhanced absorption in graphene, are considered. The discussion also concerns the impact of the nonlinear properties of graphene, such as optical bistability.
Resumo:
OBJECTIVE - A population-based prospective study was analysed to: a) determine the prevalence of hypertension; b) investigate the clustering of other cardiovascular risk factors and c) verify whether older differed from younger adults in the pattern of clustering. METHODS - The data comprised a representative sample of the population of Bambuí, Brazil. Multiple logistic regression was used to investigate the independent association between hypertension and selected factors. RESULTS - A total of 820 younger adults (82.5%) and 1494 older adults (85.9%) participated in this study. The overall prevalence of hypertension was 24.8% (SE=1.4 %), being higher in women (26.9±1.5%) than in men (22.0± 1.7%) (p=0.033). Hypertension was positively and significantly associated with physical inactivity, overweight, hypercholesterolemia hyperglycemia and hypertriglyceridemia. The coexistence of hypertension with 4 or more of these risk factors occurred 6 times more than expected by chance, after adjusting for age and sex (OR=6.3; 95%CI: 3.4-11.9). The pattern of risk factor clustering in hypertensive individuals differed with age. CONCLUSION - Our results reinforce the need to increase detection and treatment of hypertension and to approach patients' global risk profiles.
Resumo:
Functional connectivity in human brain can be represented as a network using electroencephalography (EEG) signals. These networks--whose nodes can vary from tens to hundreds--are characterized by neurobiologically meaningful graph theory metrics. This study investigates the degree to which various graph metrics depend upon the network size. To this end, EEGs from 32 normal subjects were recorded and functional networks of three different sizes were extracted. A state-space based method was used to calculate cross-correlation matrices between different brain regions. These correlation matrices were used to construct binary adjacency connectomes, which were assessed with regards to a number of graph metrics such as clustering coefficient, modularity, efficiency, economic efficiency, and assortativity. We showed that the estimates of these metrics significantly differ depending on the network size. Larger networks had higher efficiency, higher assortativity and lower modularity compared to those with smaller size and the same density. These findings indicate that the network size should be considered in any comparison of networks across studies.
Resumo:
BACKGROUND: School-based intervention studies promoting a healthy lifestyle have shown favorable immediate health effects. However, there is a striking paucity on long-term follow-ups. The aim of this study was therefore to assess the 3 yr-follow-up of a cluster-randomized controlled school-based physical activity program over nine month with beneficial immediate effects on body fat, aerobic fitness and physical activity. METHODS AND FINDINGS: Initially, 28 classes from 15 elementary schools in Switzerland were grouped into an intervention (16 classes from 9 schools, n = 297 children) and a control arm (12 classes from 6 schools, n = 205 children) after stratification for grade (1st and 5th graders). Three years after the end of the multi-component physical activity program of nine months including daily physical education (i.e. two additional lessons per week on top of three regular lessons), short physical activity breaks during academic lessons, and daily physical activity homework, 289 (58%) participated in the follow-up. Primary outcome measures included body fat (sum of four skinfolds), aerobic fitness (shuttle run test), physical activity (accelerometry), and quality of life (questionnaires). After adjustment for grade, gender, baseline value and clustering within classes, children in the intervention arm compared with controls had a significantly higher average level of aerobic fitness at follow-up (0.373 z-score units [95%-CI: 0.157 to 0.59, p = 0.001] corresponding to a shift from the 50th to the 65th percentile between baseline and follow-up), while the immediate beneficial effects on the other primary outcomes were not sustained. CONCLUSIONS: Apart from aerobic fitness, beneficial effects seen after one year were not maintained when the intervention was stopped. A continuous intervention seems necessary to maintain overall beneficial health effects as reached at the end of the intervention. TRIAL REGISTRATION: ControlledTrials.com ISRCTN15360785.
Resumo:
The Kilombero Malaria Project (KMP) attemps to define opperationally useful indicators of levels of transmission and disease and health system relevant monitoring indicators to evaluate the impact of disease control at the community or health facility level. The KMP is longitudinal community based study (N = 1024) in rural Southern Tanzania, investigating risk factors for malarial morbidity and developing household based malaria control strategies. Biweekly morbidity and bimonthly serological, parasitological and drug consumption surveys are carried out in all study households. Mosquito densities are measured biweekly in 50 sentinel houses by timed light traps. Determinants of transmission and indicators of exposure were not strongly aggregated within households. Subjective morbidity (recalled fever), objective morbidity (elevated body temperature and high parasitaemia) and chloroquine consumption were strongly aggregated within a few households. Nested analysis of anti-NANP40 antibody suggest that only approximately 30% of the titer variance can explained by household clustering and that the largest proportion of antibody titer variability must be explained by non-measured behavioral determinants relating to an individual's level of exposure within a household. Indicators for evaluation and monitoring and outcome measures are described within the context of health service management to describe control measure output in terms of community effectiveness.