996 resultados para Laguerre-gaussian Beams
Resumo:
The inclusion of fibers into a matrix over only a partial thickness of the beam is regarded as partially fiber reinforcing a beam. This concept is fully invoked in the present investigation. A tensile strain enhancement factor, t, as determined by a direct tension test, forms a convenient engineering parameter that takes care of the influence of the aspect ratio and volume fraction of the given type of fiber. The appropriate thickness of the beam section to be reinforced with fibers is computed using the above parameter. Necessary analytical expressions were developed to compute the moment enhancement factor associated with different values of the parameter, t. The validity of the approach was experimentally demonstrated. Practically similar deflection patterns for fully and partially fibrous sections were observed. The applicability of the method developed in practical situations, such as the design of airfield and highway pavements with fiber conretes, is cited.
Resumo:
An exact expression for the calculation of gaussian path integrals involving non-local potentials is given. Its utility is demonstrated by using it to evaluate a path integral arising in the study of an electron gas in a random potential.
Resumo:
Pseudo-marginal methods such as the grouped independence Metropolis-Hastings (GIMH) and Markov chain within Metropolis (MCWM) algorithms have been introduced in the literature as an approach to perform Bayesian inference in latent variable models. These methods replace intractable likelihood calculations with unbiased estimates within Markov chain Monte Carlo algorithms. The GIMH method has the posterior of interest as its limiting distribution, but suffers from poor mixing if it is too computationally intensive to obtain high-precision likelihood estimates. The MCWM algorithm has better mixing properties, but less theoretical support. In this paper we propose to use Gaussian processes (GP) to accelerate the GIMH method, whilst using a short pilot run of MCWM to train the GP. Our new method, GP-GIMH, is illustrated on simulated data from a stochastic volatility and a gene network model.
Resumo:
This paper considers the applicability of the least mean fourth (LM F) power gradient adaptation criteria with 'advantage' for signals associated with gaussian noise, the associated noise power estimate not being known. The proposed method, as an adaptive spectral estimator, is found to provide superior performance than the least mean square (LMS) adaptation for the same (or even lower) speed of convergence for signals having sufficiently high signal-to-gaussian noise ratio. The results include comparison of the performance of the LMS-tapped delay line, LMF-tapped delay line, LMS-lattice and LMF-lattice algorithms, with the Burg's block data method as reference. The signals, like sinusoids with noise and stochastic signals like EEG, are considered in this study.
Resumo:
Gaussian processes (GPs) are promising Bayesian methods for classification and regression problems. Design of a GP classifier and making predictions using it is, however, computationally demanding, especially when the training set size is large. Sparse GP classifiers are known to overcome this limitation. In this letter, we propose and study a validation-based method for sparse GP classifier design. The proposed method uses a negative log predictive (NLP) loss measure, which is easy to compute for GP models. We use this measure for both basis vector selection and hyperparameter adaptation. The experimental results on several real-world benchmark data sets show better orcomparable generalization performance over existing methods.
Resumo:
Abstract is not available.
Resumo:
In a beam whose depth is comparable to its span, the distribution of bending and shear stresses differs appreciably from those given by the ordinary flexural theory. In this paper, a general solution for the analysis of a rectangular, single-scan beam, under symmetrical loading is developed. The Multiple Fourier procedure is employed using four series by which it has been possible to satisfy all boundary and the resulting relation among the co-efficient are derives.
Resumo:
The use of the multiple Fourier method to analyses the stress distribution in the and regions of as a post-tensioned prestressed concrete beam had shown. The multiple Fourier method demonstrated have is a relatively new method for solving those problems for which the “Saint Vansant principle” is not applicable, The actual three-dimensional problem and a two-dimensional simplified representation of it are treated. The two-dimensional case is treated first and rather completely to gain further experience with multiple Fourier procedure, the appropriate Galerkin Vector for the three-dimensional case is found and the required relations between the arbitrary functions are stated.
Resumo:
Large deflections of simply supported beams have been studied when the trans verse loading consists of a uniformity distributed load plus a century concentrate load under the two cases, (1) the reactions are vertical. (2) the reactions are normal to the bent beam together with frictional forces. The solutions are obtained by the use of power series expansions. This method is applicable to cases of symmetrical loading in beams.
Resumo:
In this paper, we look for rotating beams whose eigenpair (frequency and mode-shape) is the same as that of uniform nonrotating beams for a particular mode. It is found that, for any given mode, there exist flexural stiffness functions (FSFs) for which the jth mode eigenpair of a rotating beam, with uniform mass distribution, is identical to that of a corresponding nonrotating uniform beam with the same length and mass distribution. By putting the derived FSF in the finite element analysis of a rotating cantilever beam, the frequencies and mode-shapes of a nonrotating cantilever beam are obtained. For the first mode, a physically feasible equivalent rotating beam exists, but for higher modes, the flexural stiffness has internal singularities. Strategies for addressing the singularities in the FSF for finite element analysis are provided. The proposed functions can be used as test-functions for rotating beam codes and for targeted destiffening of rotating beams.
Resumo:
The Gaussian probability closure technique is applied to study the random response of multidegree of freedom stochastically time varying systems under non-Gaussian excitations. Under the assumption that the response, the coefficient and the excitation processes are jointly Gaussian, deterministic equations are derived for the first two response moments. It is further shown that this technique leads to the best Gaussian estimate in a minimum mean square error sense. An example problem is solved which demonstrates the capability of this technique for handling non-linearity, stochastic system parameters and amplitude limited responses in a unified manner. Numerical results obtained through the Gaussian closure technique compare well with the exact solutions.
Resumo:
A finite element analysis of thin-walled open-section laminated anisotropic beams is presented herein. A two-noded, 8 degrees of freedom per node thin-walled open-section laminated anisotropic beam finite element has been developed and used. The displacements of the element reference axes are expressed in terms of one-dimensional first order Hermite interpolation polynomials and line member assumptions are invoked in the formulation of the stiffness matrix. The problems of: 1. (a) an isotropic material Z section straight cantilever beam, and 2. (b) a single-layer (0°) composite Z section straight cantilever beam, for which continuum solutions (exact/approximate) are possible, have been solved in order to evaluate the performance of the finite element. Its applicability has been shown by solving the following problems: 3. (c) a two-layer (45°/−45°) composite Z section straight cantilever beam, 4. (d) a three-layer (0°/45°/0°) composite Z section straight cantilever beam.
Resumo:
An attempt is made to study the fracture behavior of ferrocement beams using J-integral and critical crack opening displacement approaches. Ferrocement beams with three different relative notch depths and different percentages of mesh reinforcement were tested in four-point bending (third-point loading). The experimental results were used to evaluate the apparent J-integral and CODc values. Results show that the apparent J-integral does not seem to follow any particular trend in variation with notch depth, but is sensitive to the increase of mesh reinforcement. Hence, the apparent J-integral appears to be a useful fracture criterion for ferrocement. The computed values of CODt are found to be dependent on the depth of notch and, thus, cannot possibly be considered as a suitable fracture criterion for ferrocement.
Resumo:
The application of Gaussian Quadrature (GQ) procedures to the evaluation of i—E curves in linear sweep voltammetry is advocated. It is shown that a high degree of precision is achieved with these methods and the values obtained through GQ are in good agreement with (and even better than) the values reported in literature by Nicholson-Shain, for example. Another welcome feature with GQ is its ability to be interpreted as an elegant, efficient analytic approximation scheme too. A comparison of the values obtained by this approach and by a recent scheme based on series approximation proposed by Oldham is made and excellent agreement is shown to exist.
Resumo:
Using analysis-by-synthesis (AbS) approach, we develop a soft decision based switched vector quantization (VQ) method for high quality and low complexity coding of wideband speech line spectral frequency (LSF) parameters. For each switching region, a low complexity transform domain split VQ (TrSVQ) is designed. The overall rate-distortion (R/D) performance optimality of new switched quantizer is addressed in the Gaussian mixture model (GMM) based parametric framework. In the AbS approach, the reduction of quantization complexity is achieved through the use of nearest neighbor (NN) TrSVQs and splitting the transform domain vector into higher number of subvectors. Compared to the current LSF quantization methods, the new method is shown to provide competitive or better trade-off between R/D performance and complexity.