938 resultados para LOGISTIC REGRESSION WITH STATE-DEPENDENT SAMPLE SELECTION


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past years, the paradigm of component-based software engineering has been established in the construction of complex mission-critical systems. Due to this trend, there is a practical need for techniques that evaluate critical properties (such as safety, reliability, availability or performance) of these systems. In this paper, we review several high-level techniques for the evaluation of safety properties for component-based systems and we propose a new evaluation model (State Event Fault Trees) that extends safety analysis towards a lower abstraction level. This model possesses a state-event semantics and strong encapsulation, which is especially useful for the evaluation of component-based software systems. Finally, we compare the techniques and give suggestions for their combined usage

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Bayesian analysis of neural networks is difficult because the prior over functions has a complex form, leading to implementations that either make approximations or use Monte Carlo integration techniques. In this paper I investigate the use of Gaussian process priors over functions, which permit the predictive Bayesian analysis to be carried out exactly using matrix operations. The method has been tested on two challenging problems and has produced excellent results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is generally assumed when using Bayesian inference methods for neural networks that the input data contains no noise or corruption. For real-world (errors in variable) problems this is clearly an unsafe assumption. This paper presents a Bayesian neural network framework which allows for input noise given that some model of the noise process exists. In the limit where this noise process is small and symmetric it is shown, using the Laplace approximation, that there is an additional term to the usual Bayesian error bar which depends on the variance of the input noise process. Further, by treating the true (noiseless) input as a hidden variable and sampling this jointly with the network's weights, using Markov Chain Monte Carlo methods, it is demonstrated that it is possible to infer the unbiassed regression over the noiseless input.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on a simple convexity lemma, we develop bounds for different types of Bayesian prediction errors for regression with Gaussian processes. The basic bounds are formulated for a fixed training set. Simpler expressions are obtained for sampling from an input distribution which equals the weight function of the covariance kernel, yielding asymptotically tight results. The results are compared with numerical experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensory cells usually transmit information to afferent neurons via chemical synapses, in which the level of noise is dependent on an applied stimulus. Taking into account such dependence, we model a sensory system as an array of LIF neurons with a common signal. We show that information transmission is enhanced by a nonzero level of noise. Moreover, we demonstrate a phenomenon similar to suprathreshold stochastic resonance with additive noise. We remark that many properties of information transmission found for the LIF neurons was predicted by us before with simple binary units [Phys. Rev. E 75, 021121 (2007)]. This confirmation of our predictions allows us to point out identical roots of the phenomena found in the simple threshold systems and more complex LIF neurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A probabilistic indirect adaptive controller is proposed for the general nonlinear multivariate class of discrete time system. The proposed probabilistic framework incorporates input–dependent noise prediction parameters in the derivation of the optimal control law. Moreover, because noise can be nonstationary in practice, the proposed adaptive control algorithm provides an elegant method for estimating and tracking the noise. For illustration purposes, the developed method is applied to the affine class of nonlinear multivariate discrete time systems and the desired result is obtained: the optimal control law is determined by solving a cubic equation and the distribution of the tracking error is shown to be Gaussian with zero mean. The efficiency of the proposed scheme is demonstrated numerically through the simulation of an affine nonlinear system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 60F17, 60G52, 60G70 secondary 60E07, 62E20.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 35K55, 35K60.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this paper is to provide an efficient control design technique for discrete-time positive periodic systems. In particular, stability, positivity and periodic invariance of such systems are studied. Moreover, the concept of periodic invariance with respect to a collection of boxes is introduced and investigated with connection to stability. It is shown how such concept can be used for deriving a stabilizing state-feedback control that maintains the positivity of the closed-loop system and respects states and control signals constraints. In addition, all the proposed results can be efficiently solved in terms of linear programming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We formulate the Becker-Döring equations for cluster growth in the presence of a time-dependent source of monomer input. In the case of size-independent aggregation and ragmentation rate coefficients we find similarity solutions which are approached in the large time limit. The form of the solutions depends on the rate of monomer input and whether fragmentation is present in the model; four distinct types of solution are found.