988 resultados para LATE PLEISTOCENE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present-day Ethiopia, glaciated landscapes do not exist, but paleoglaciated landscapes have been documented on a few mountain tops, which have altitudes higher than about 4,350 m asl in northern Ethiopia (Simen Mountains) and about 4,100 m asl in southern Ethiopia (Arsi and Bale Mountains). Glaciers were associated with the Late Pleistocene cold stages and reached as far down as 3,760 m asl in northern and 3,200 m asl in southern Ethiopia. Bale Mountains had the most extensive Late Pleistocene glaciation, covering over 190 km2, followed by Arsi Mountains (about 85 km2). In Simen, the Late Pleistocene glaciers covered merely 13 km2. In addition, paleo-periglacial slope deposits are found on all above-mentioned paleoglaciated mountains and in further mountain systems which did not host glaciers. This allows the reconstruction of the Late Pleistocene paleoclimate as being about 8 °C colder than at present (2014), much more dry, and probably without monsoon, at least in northern Ethiopia. Most probably in the Early Holocene, the re-emergence of monsoonal rains led to a strong erosion phase, which was followed by an extended stable phase with soil formation, building up about 70-cm-deep A-horizons (Andosol) on the paleo-periglacial slope deposits. These soils have been heavily degraded due to human-induced soil erosion up to about 3800 m asl since agriculture started several decades to millennia ago.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Concentrations of atmospheric noble gases (neon, argon, krypton, and xenon) dissolved in groundwaters from northern Oman indicate that the average ground temperature during the Late Pleistocene (15,000 to 24,000 years before present) was 6.5° ± 0.6°C lower than that of today. Stable oxygen and hydrogen isotopic groundwater data show that the origin of atmospheric water vapor changed from a primarily southern, Indian Ocean source during the Late Pleistocene to a dominantly northern, Mediterranean source today. The reduced northern water vapor source is consistent with a drier Last Glacial Maximum through much of northern Africa and Arabia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A wide variety of environmental records is necessary for analysing and understanding the complex Late Quaternary dynamics of permafrost-dominated Arctic landscapes. A NE Siberian periglacial key region was studied in detail using sediment records, remote sensing data, and terrain modelling, all incorporated in a geographical information system (GIS). The study area consists of the Bykovsky Peninsula and the adjacent Khorogor Valley in the Kharaulakh Ridge situated a few kilometres southeast of the Lena Delta. In this study a comprehensive cryolithological database containing information from 176 sites was compiled. The information from these sites is based on the review of previously published borehole data, outcrop profiles, surface samples, and our own field data. These archives cover depositional records of three periods: from Pliocene to Early Pleistocene, the Late Pleistocene and the Holocene. The main sediment sequences on the Bykovsky Peninsula consist of up to 50 m thick ice-rich permafrost deposits (Ice Complex) that were accumulated during the Late Pleistocene. They were formed as a result of nival processes around extensive snowfields in the Kharaulakh Ridge, slope processes in these mountains (such as in the Khorogor Valley), and alluvial/proluvial sedimentation in a flat accumulation plain dominated by polygonal tundra in the mountain foreland (Bykovsky Peninsula). During the early to middle Holocene warming, a general landscape transformation occurred from an extensive Late Pleistocene accumulation plain to a strongly thermokarst-dominated relief dissected by numerous depressions. Thermokarst subsidence had an enormous influence on the periglacial hydrological patterns, the sediment deposition, and on the composition and distribution of habitats. Climate deterioration, lake drainage, and talik refreezing occurred during the middle to late Holocene. The investigated region was reached by the post-glacial sea level rise during the middle Holocene, triggering thermo-abrasion of ice-rich coasts and the marine inundation of thermokarst depressions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polycystine radiolarians are used to reconstruct summer sea surface temperatures (SSSTs) for the Late Pleistocene-Holocene (600-13,400 14C years BP) in the Norwegian Sea. At 13,200 14C years BP, the SSST was close to the average Holocene SSST (~12°C). It then gradually dropped to 7.1°C in the Younger Dryas. Near the Younger Dryas-Holocene transition (~10,000 14C years BP), the SSST increased 5°C in about 530 years. Four abrupt cooling events, with temperature drops of up to 2.1°C, are recognized during the Holocene: at 9340, 7100 ("8200 calendar years event"), 6400 and 1650 14C years BP. Radiolarian SSSTs and the isotopic signal from the GISP2 ice core are strongly coupled, stressing the importance of the Norwegian Sea as a mediator of heat/precipitation exchange between the North Atlantic, the atmosphere, and the Greenland ice sheet. Radiolarian and diatom-derived SSSTs display similarities, with the former not showing the recently reported Holocene cooling trend.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Global and local climatic forcing, e.g. concentration of atmospheric CO2 or insolation, influence the distribution of C3 and C4 plants in southwest Africa. C4 plants dominate in more arid and warmer areas and are favoured by lower pCO2 levels. Several studies have assessed past and present continental vegetation by the analysis of terrestrial n-alkanes in near-coastal deep sea sediments using single samples or a small number of samples from a given climatic stage. The objectives of this study were to evaluate vegetation changes in southwest Africa with regard to climatic changes during the Late Pleistocene and the Holocene and to elucidate the potential of single sample simplifications. We analysed two sediment cores at high resolution, altogether ca. 240 samples, from the Southeast Atlantic Ocean (20°S and 12°S) covering the time spans of 18 to 1 ka and 56 to 2 ka, respectively. Our results for 20°S showed marginally decreasing C4 plant domination (of ca. 5%) during deglaciation based on average chain length (ACL27-33 values) and carbon isotopic composition of the C31 and C33 n-alkanes. Values for single samples from 18 ka and the Holocene overlap and, thus, are not significantly representative of the climatic stages they derive from. In contrast, at 12°S the n-alkane parameters show a clear difference of plant type for the Late Pleistocene (C4 plant domination, 66% C4 on average) and the Holocene (C3 plant domination, 40% C4 on average). During deglaciation vegetation change highly correlates with the increase in pCO2 (r² = 0.91). Short-term climatic events such as Heinrich Stadials or Antarctic warming periods are not reflected by vegetation changes in the catchment area. Instead, smaller vegetation fluctuations during the Late Pleistocene occur in accordance with local variations of insolation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A high-resolution biochronology is presented for the Late Quaternary of the central Mediterranean. In the Late Pleistocene-Holocene successions three assemblage zones are distinguished on the basis of frequency patterns of planktic foraminifera. The age of these zones is determined by Accelerator Mass Spectrometry (AMS)14C dating. The zonal boundaries are dated at 12,700 yr B.P. (the end of Termination Ia) and 9600 yr B.P. (the start of Termination Ib), respectively. The AMS dates show that major changes in the planktic and benthic realms occurred synchronously over wide areas, although records of individual species may show important regional differences. In the studied areas, resedimentation processes revealed by anomalous successions of14C dates, play a far more important role than indicated by the sedimentological and micropaleontological data. Possibly these processes contribute to the very high accumulation rates in the glacial Zone III. Although the AMS technique has increased the accuracy of14C-measurements, admixture of older carbonate may still lead to substantial age differences between areas with different sedimentary regimes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermal permafrost degradation and coastal erosion in the Arctic remobilize substantial amounts of organic carbon (OC) and nutrients which have accumulated in late Pleistocene and Holocene unconsolidated deposits. Permafrost vulnerability to thaw subsidence, collapsing coastlines and irreversible landscape change are largely due to the presence of large amounts of massive ground ice such as ice wedges. However, ground ice has not, until now, been considered to be a source of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) and other elements which are important for ecosystems and carbon cycling. Here we show, using biogeochemical data from a large number of different ice bodies throughout the Arctic, that ice wedges have the greatest potential for DOC storage, with a maximum of 28.6 mg/L (mean: 9.6 mg/L). Variation in DOC concentration is positively correlated with and explained by the concentrations and relative amounts of typically terrestrial cations such as Mg2+ and K+. DOC sequestration into ground ice was more effective during the late Pleistocene than during the Holocene, which can be explained by rapid sediment and OC accumulation, the prevalence of more easily degradable vegetation and immediate incorporation into permafrost. We assume that pristine snowmelt is able to leach considerable amounts of well-preserved and highly bioavailable DOC as well as other elements from surface sediments, which are rapidly frozen and stored in ground ice, especially in ice wedges, even before further degradation. We found that ice wedges in the Yedoma region represent a significant DOC (45.2 Tg) and DIC (33.6 Tg) pool in permafrost areas and a freshwater reservoir of 4200 km**3. This study underlines the need to discriminate between particulate OC and DOC to assess the availability and vulnerability of the permafrost carbon pool for ecosystems and climate feedback upon mobilization.