977 resultados para LA NINA
Resumo:
La-graded heterostructure films were prepared by sol-gel technique on platinum substrates and electrical properties of these films were compared with those of conventional thin films of similar compositions. X-ray diffraction results indicate the pure perovskite polycrystalline structure of these films. Atomic Force Microscopy analysis revealed a finer grain size and relatively lower surface roughness. Relatively higher values of Pm and Pr (69 and 38 ?C cm?2, respectively) and excellent dielectric properties with lower loss (K=1900, tan ?=0.035 at 100 kHz) were observed for La-graded heterostructure films. Also lower leakage current density (not, vert, similar2.5 nA cm?2) and a higher onset field (not, vert, similar50 kV cm?1) of space charge conduction indicated higher breakdown strength and good leakage current characteristics. The ac electric field dependence of the permittivity at sub-switching fields was analyzed in the framework of the Rayleigh dynamics of domain walls. The estimated irreversible domain wall displacement contribution to the total dielectric permittivity was 17 and 9% for conventional 15 at.% La doped PbTiO3 and La-graded heterostructure films, respectively. The improved dielectric and polarization behavior of La-graded heterostructure films may be attributed to homogenous dopant distribution compared to the conventional 15 at.% La doped PbTiO3 films.
Resumo:
We present an extensive study on magnetic and transport properties of La(0.85)Sr(0.15)CoO(3) single crystals grown by a float zone method to address the issue of phase separation versus spin-glass (SG) behavior. The dc magnetization study reveals a kink in field-cooled magnetization, and the peak in the zero-field-cooling curve shifts to lower temperature at modest dc fields, indicating the SG magnetic phase. The ac susceptibility study exhibits a considerable frequency-dependent peak shift (similar to 4 K) and a time-dependent memory effect below the freezing temperature. In addition, the characteristic time scale tau(0) estimated from the frequency-dependent ac susceptibility measurement is found to be similar to 10(-13) s, which matches well with typical values observed in canonical SG systems. The transport relaxation study evidently demonstrates the time-dependent glassy phenomena. In essence, all our experimental results corroborate the existence of SG behavior in La(0.85)Sr(0.15)CoO(3) single crystals.
Resumo:
The synthesis, structure and magnetic properties of mixed-metal oxides of ABO(3) composition in the La-B-V-O (B = Ni, Cu) systems are described in the present paper. While the B = Ni oxides adopt GdFeO3-like perovskite structure containing disordered nickel and vanadium at the octahedral B site, La3Cu2VO9 crystallizes in a YAlO3-type structure. A detailed investigation of the superstructure of nominal La3Cu2VO9 by WDS analysis and Rietveld refinement of powder XRD data reveal that the likely composition of the phase is La13Cu9V4O38.5, where the Cu and V atoms are ordered in a root13a(h) (a(h) = hexagonal a parameter of YAlO3-like subcell) superstructure. Magnetic susceptibility data support the proposed superstructure consisting of triangular Cu-3 clusters. At low temperatures, the magnetic moment corresponds to S = 1/2 per Cu-3 cluster, while at high temperatures the behavior is Curie-Weiss like, showing S = 1/2 per copper. The present work reveals the contrasting behavior of La-Cu-V-O and La-Ni-V-O systems: while a unique line-phase related to YAlO3 structure is formed around La3Cu2VO9 Composition in the copper system, a continuous series of perovskite-GdFeO3 solid solutions, LaNi1-xVxO3 for 0 less than or equal to x less than or equal to 1/3 seems to be obtained in the nickel system, where the oxidation state of nickel varies from 3+ to 2+.
Resumo:
Synthesis and structure of new (Bi, La)(3)MSb(2)O(11) phases (M = Cr, Mn, Fe) are reported in conjunction with their magnetic and photocatalytic properties. XRD refinements reflect that Bi(3)CrSb(2)O(11), Bi(2)LaCrSb(2)O(11), Bi(2)LaMnSb(2)O(11) and Bi(2)LaFeSb(2)O(11) adopt KSbO(3)-type structure (space group, Pn (3) over bar). The structure can be described through three interpenetrating networks where the first is the (M/Sb)O(6) octahedral network and other two are the identical networks having Bi(6)O(4) composition. The magnetic measurements on Bi(2)LaCrSb(2)O(11) and Bi(2)LaMnSb(2)O(11) show paramagnetic behaviour with magnetic moments close to the expected spin only magnetic moments of Cr(+3) and Mn(+3). The UV-Visible diffuse reflectance spectra are broad and indicate that these materials possess a bandgap of similar to 2 eV. The photocatalytic activity of these materials has been investigated by degrading Malachite Green (MG) under exposure to UV light.
Resumo:
HCV NS3 protein plays a central role in viral polyprotein processing and RNA replication. We demonstrate that the NS3 protease (NS3(pro)) domain alone can specifically bind to HCV-IRES RNA, predominantly in the SLIV region. The cleavage activity of the NS3 protease domain is reduced upon HCV-RNA binding. More importantly, NS3(pro) binding to the SLIV hinders the interaction of La protein, a cellular IRES-trans acting factor required for HCV IRES-mediated translation, resulting in inhibition of HCV-IRES activity. Although overexpression of both NS3(pro) as well as the full length NS3 protein decreased the level of HCV IRES mediated translation, replication of HCV replicon RNA was enhanced significantly. These observations suggest that the NS3(pro) binding to HCV IRES reduces translation in favor of RNA replication. The competition between the host factor (La) and the viral protein (NS3) for binding to HCV IRES might regulate the molecular switch from translation to replication of HCV.
Resumo:
The lanthanide metals lanthanum, praseodymium and neodymium containing 2,200, 2,600, 1,850 mass ppm oxygen, respectively, were deoxidized to 20-30 ppm level at 1,073 K by an electrochemical method. The metal to be deoxidized was used as the cathode in an electrolysis cell which consisted of a graphite anode and molten CaCl2 electrolyte. The calcium metal produced at the cathode by electrolysis effectively deoxidized the lanthanide metal. Calcium oxide produced by deoxidation, dissolved in the melt. The liberation of carbon monoxide/dioxide at the anode was found to prevent accumulation of oxygen in the melt. For a quantitative discussion of the limits of deoxidation achievable by this technique, a thermodynamic investigation of the lanthanide-oxygen (Ln-O ; Ln = La, Pr, Nd) solid solutions was conducted. The lanthanide metal, yttrium and titanium samples were immersed in calcium-saturated CaCl2 melt, containing a small quantity of dissolved CaO, at 1,093 K. The oxygen potential of the melt and the Ln-O solid solutions were obtained from the oxygen content of yttrium samples at equilibrium, and the known thermodynamic properties of yttrium-oxygen solid solution. The results were confirmed by using Y/Y2O3 equilibrium to control the oxygen potential of the molten salt reservoir. The oxygen affinity of the metals was found to decrease in the order : Y > Ti > Nd > Pr > La. The deoxidation results are consistent with the thermodynamic properties of the RE-O solid solutions.
Resumo:
Phase relations in the system Cu-La-O at 1200 K have been determined by equilibrating samples of different average composition at 1200 K, and phase analysis of quenched samples using optical microscopy, XRD, SEM and EDX. The equilibration experiments were conducted in evacuated ampoules, and under flowing inert gas and pure oxygen. There is only one stable binary oxide La2O3 along the binary La-O, and two oxides Cu2O and CuO along the binary Cu-O. The Cu-La alloys were found to be in equilibrium with La2O3. Two ternary oxides CuLaO2 and CuLa2O4+
Resumo:
Dense (Ba1―xLax)2In2O5+x (BLIO) electrolytes with different compositions (x = 0.4, 0.5, 0.6) were fabricated using powders obtained by the Pechini method. The formation of BLIO powders was investigated by using X-ray diffraction and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. The calcination temperature and time were optimized. The sintered (Ba1―xLax)2In2O5+x electrolytes showed a relative density greater than ∼97%, and the major phase of three electrolyte compositions was indexed as a cubic perovskite. The electrical conductivity of BLIO ceramics at elevated temperatures in air was measured by ac-impedance spectroscopy. The activation energies for conduction in BLIO were 102 kJ mol―1 between 473 and 666 K and 118 kJ mol―1 between 769 and 873 K, which are comparable to that for 8 mol % yttria-stabilized cubic zirconia. Mixed-potential gas sensors utilizing BLIO-based electrolytes exhibited good sensitivity to different CO concentrations from ∼100 to ∼500 ppm and excellent selectivity to methane at around 873 K.
Resumo:
A large reduction in the leakage current behavior in (Ba, Sr)TiO3 (BST) thin films was observed by graded-layer donor doping. The graded doping was achieved by introducing La-doped BST layers in the grown BST films. The films showed a large decrease (about six orders of magnitude) in the leakage current in comparison to undoped films at an electric field of 100 kV/cm. The large decrease in leakage current was attributed to the formation of highly resistive layers, originating from compensating defect chemistry involved for La-doped films grown in oxidizing environment. Temperature-dependent leakage-current behavior was studied to investigate the conduction mechanism and explanations of the results were sought from Poole–Frenkel conduction mechanism.
Resumo:
We have synthesized La0.83Na0.11MnO2.93 by heating La2O3 and MnCO3 in NaCl melt at 900 °C. The exact composition was arrived by analyzing each ion by an independent chemical method. The compound crystallized in a rhombohedral structure and showed an insulator-to-metal transition at 290 K. Epitaxial thin films were fabricated on LaAlO3 (100) using a pulsed laser deposition technique. The film also showed an insulator-to-metal transition at 290 K. Magnetoresistance [ΔR/R0 = (RH−R0)/R0] was −71% near the insulator-to-metal transition temperature of 290 K at 6 T magnetic field.
Resumo:
Antiferroelectric lanthanum-modified PbZrO3 thin films with La contents between 0 and 6 at. % have been deposited on Pt(111)/Ti/SiO2/Si substrate by sol-gel route. On the extent of La-modification, maximum polarization (Pmax) and recoverable energy density (W) have been enhanced followed by their subsequent reduction. A maximum Pmax ( ∼ 0.54 C/m2 at ∼ 60 MV/m) as well as a maximum W ( ∼ 14.9 J/cc at ∼ 60 MV/m) have been achieved on 5% La modification. Both Pmax and W have been found to be strongly dependent on La-induced crystallographic orientations.
Resumo:
Highly (110) preferred orientated antiferroelectric PbZrO3 (PZ) and La-modified PZ thin films have been fabricated on Pt/Ti/SiO2/Si substrates using sol-gel process. Dielectric properties, electric field induced ferroelectric polarization, and the temperature dependence of the dielectric response have been explored as a function of composition. The Tc has been observed to decrease by ∼ 17 °C per 1 mol % of La doping. Double hysteresis loops were seen with zero remnant polarization and with coercive fields in between 176 and 193 kV/cm at 80 °C for antiferroelectric to ferroelectric phase transformation. These slim loops have been explained by the high orientation of the films along the polar direction of the antiparallel dipoles of a tetragonal primitive cell and by the strong electrostatic interaction between La ions and oxygen ions in an ABO3 perovskite unit cell. High quality films exhibited very low loss factor less than 0.015 at room temperature and pure PZ; 1 and 2 mol % La doped PZs have shown the room temperature dielectric constant of 135, 219, and 142 at the frequency of 10 kHz. The passive layer effects in these films have been explained by Curie constants and Curie temperatures. The ac conductivity and the corresponding Arrhenius plots have been shown and explained in terms of doping effect and electrode resistance.
Resumo:
Lanthanum doped lead titanate thin films are the potential candidates for the capacitors, actuators and pyroelectric sensor applications due to their excellent dielectric, and ferroelectric properties. Lanthanum doped lead titanate thin films are grown on platinum coated Si substrates by excimer laser ablation technique. A broad diffused phase transition with the maximum dielectric permittivity (ϵmax) shifting to higher temperatures with the increase of frequency, along with frequency dispersion below Tc, which are the signatures of the relaxor like characteristics were observed. The dielectric properties are investigated from −60°C to 200°C with an application of different dc fields. With increasing dc field, the dielectric constant is observed to reduce and phase transition temperature shifted to higher temperature. With the increased ac signal amplitude of the applied frequency, the magnitude of the dielectric constant is increasing and the frequency dispersion is observed in ferroelectric phase, whereas in paraelectric phase, there is no dispersion has been observed. The results are correlated with the existing theories.