911 resultados para Knowledge Based Urban Development
Should the knowledge-based economy be a savant or a sage? Wisdom and socially intelligent innovation
Resumo:
Discourse about knowledge-based economies rarely moves beyond the commercialization of science and engineering, and is locked in the discursive limits of functionalism. We argue that these discourses limit the scope of what knowledge-based economies might achieve because they are uninformed by an adequate conception of knowledge. In particular, knowledge management and knowledge-based economy discourse has not included the axiological dimension of knowledge that leads to wisdom. Taking an axiological perspective, we can discuss policy frameworks aimed at producing the social structures needed to bring fully formed and fully functioning knowledge societies into being. We argue that while the dominant discourse of industrial modernity remains rationalist, functionalist, utilitarian and technocratic, knowledge-based economies will resemble a savant rather than a sage. A wisdom-based renaissance of humanistic epistemology is needed to avoid increasing social dysfunction and a lack of wisdom in complex technological societies.
Resumo:
Owing to the high degree of vulnerability of liquid retaining structures to corrosion problems, there are stringent requirements in its design against cracking. In this paper, a prototype knowledge-based system is developed and implemented for the design of liquid retaining structures based on the blackboard architecture. A commercially available expert system shell VISUAL RULE STUDIO working as an ActiveX Designer under the VISUAL BASIC programming environment is employed. Hybrid knowledge representation approach with production rules and procedural methods under object-oriented programming are used to represent the engineering heuristics and design knowledge of this domain. It is demonstrated that the blackboard architecture is capable of integrating different knowledge together in an effective manner. The system is tailored to give advice to users regarding preliminary design, loading specification and optimized configuration selection of this type of structure. An example of application is given to illustrate the capabilities of the prototype system in transferring knowledge on liquid retaining structure to novice engineers. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The performance of most operations systems is significantly affected by the interaction of human decision-makers. A methodology, based on the use of visual interactive simulation (VIS) and artificial intelligence (AI), is described that aims to identify and improve human decision-making in operations systems. The methodology, known as 'knowledge-based improvement' (KBI), elicits knowledge from a decision-maker via a VIS and then uses AI methods to represent decision-making. By linking the VIS and AI representation, it is possible to predict the performance of the operations system under different decision-making strategies and to search for improved strategies. The KBI methodology is applied to the decision-making surrounding unplanned maintenance operations at a Ford Motor Company engine assembly plant.
Resumo:
Software development methodologies are becoming increasingly abstract, progressing from low level assembly and implementation languages such as C and Ada, to component based approaches that can be used to assemble applications using technologies such as JavaBeans and the .NET framework. Meanwhile, model driven approaches emphasise the role of higher level models and notations, and embody a process of automatically deriving lower level representations and concrete software implementations. The relationship between data and software is also evolving. Modern data formats are becoming increasingly standardised, open and empowered in order to support a growing need to share data in both academia and industry. Many contemporary data formats, most notably those based on XML, are self-describing, able to specify valid data structure and content, and can also describe data manipulations and transformations. Furthermore, while applications of the past have made extensive use of data, the runtime behaviour of future applications may be driven by data, as demonstrated by the field of dynamic data driven application systems. The combination of empowered data formats and high level software development methodologies forms the basis of modern game development technologies, which drive software capabilities and runtime behaviour using empowered data formats describing game content. While low level libraries provide optimised runtime execution, content data is used to drive a wide variety of interactive and immersive experiences. This thesis describes the Fluid project, which combines component based software development and game development technologies in order to define novel component technologies for the description of data driven component based applications. The thesis makes explicit contributions to the fields of component based software development and visualisation of spatiotemporal scenes, and also describes potential implications for game development technologies. The thesis also proposes a number of developments in dynamic data driven application systems in order to further empower the role of data in this field.
Resumo:
The thesis describes the work carried out to develop a prototype knowledge-based system 'KBS-SETUPP' to generate process plans for the manufacture of seamless tubes. The work is specifically related to a plant in which hollows are made from solid billets using a rotary piercing process and then reduced to required size and finished properties using the fixed plug cold drawing process. The thesis first discusses various methods of tube production in order to give a general background of tube manufacture. Then a review of the automation of the process planning function is presented in terms of its basic sub-tasks and the techniques and suitability of a knowledge-based system is established. In the light of such a review and a case study, the process planning problem is formulated in the domain of seamless tube manufacture, its basic sub-tasks are identified and capabilities and constraints of the available equipment in the specific plant are established. The task of collecting and collating the process planning knowledge in seamless tube manufacture is discussed and is mostly fulfilled from domain experts, analysing of existing manufacturing records specific to plant, textbooks and applicable Standards. For the cold drawing mill, tube-drawing schedules have been rationalised to correspond with practice. The validation of such schedules has been achieved by computing the process parameters and then comparing these with the drawbench capacity to avoid over-loading. The existing models cannot be simulated in the computer program as such, therefore a mathematical model has been proposed which estimates the process parameters which are in close agreement with experimental values established by other researchers. To implement the concepts, a Knowledge-Based System 'KBS- SETUPP' has been developed on Personal Computer using Turbo- Prolog. The system is capable of generating process plans, production schedules and some additional capabilities to supplement process planning. The system generated process plans have been compared with the actual plans of the company and it has been shown that the results are satisfactory and encouraging and that the system has the capabilities which are useful.
Resumo:
Hierarchical knowledge structures are frequently used within clinical decision support systems as part of the model for generating intelligent advice. The nodes in the hierarchy inevitably have varying influence on the decisionmaking processes, which needs to be reflected by parameters. If the model has been elicited from human experts, it is not feasible to ask them to estimate the parameters because there will be so many in even moderately-sized structures. This paper describes how the parameters could be obtained from data instead, using only a small number of cases. The original method [1] is applied to a particular web-based clinical decision support system called GRiST, which uses its hierarchical knowledge to quantify the risks associated with mental-health problems. The knowledge was elicited from multidisciplinary mental-health practitioners but the tree has several thousand nodes, all requiring an estimation of their relative influence on the assessment process. The method described in the paper shows how they can be obtained from about 200 cases instead. It greatly reduces the experts’ elicitation tasks and has the potential for being generalised to similar knowledge-engineering domains where relative weightings of node siblings are part of the parameter space.
Resumo:
The current rate of global biodiversity loss led many governments to sign the international agreement ‘Halting Biodiversity Loss by 2010 and beyond’ in 2001. The UK government was one of these and has a number of methods to tackle this, such as: commissioning specific technical guidance and supporting the UK Biodiversity Acton Plan (BAP) targets. However, by far the most effective influence the government has upon current biodiversity levels is through the town planning system. This is due to the control it has over all phases of a new development scheme’s lifecycle.There is an increasing myriad of regulations, policies and legislation, which deal with biodiversity protection and enhancement across the hierarchical spectrum: from the global and European level, down to regional and local levels. With these drivers in place, coupled with the promotion of benefits and incentives, increasing biodiversity value ought to be an achievable goal on most, if not all development sites. However, in the professional world, this is not the case due to a number of obstructions. Many of these tend to be ‘process’ barriers, which are particularly prevalent with ‘urban’ and ‘major’ development schemes, and is where the focus of this research paper lies.The paper summarises and discusses the results of a questionnaire survey, regarding obstacles to maximising biodiversity enhancements on major urban development schemes. The questionnaire was completed by Local Government Ecologists in England. The paper additionally refers to insights from previous action research, specialist interviews, and case studies, to reveal the key process obstacles.Solutions to these obstacles are then alluded to and recommendations are made within the discussion.
Resumo:
Design of casting entails the knowledge of various interacting factors that are unique to casting process, and, quite often, product designers do not have the required foundry-specific knowledge. Casting designers normally have to liaise with casting experts in order to ensure the product designed is castable and the optimum casting method is selected. This two-way communication results in long design lead times, and lack of it can easily lead to incorrect casting design. A computer-based system at the discretion of a design engineer can, however, alleviate this problem and enhance the prospect of casting design for manufacture. This paper proposes a knowledge-based expert system approach to assist casting product designers in selecting the most suitable casting process for specified casting design requirements, during the design phase of product manufacture. A prototype expert system has been developed, based on production rules knowledge representation technique. The proposed system consists of a number of autonomous but interconnected levels, each dealing with a specific group of factors, namely, casting alloy, shape and complexity parameters, accuracy requirements and comparative costs, based on production quantity. The user interface has been so designed to allow the user to have a clear view of how casting design parameters affect the selection of various casting processes at each level; if necessary, the appropriate design changes can be made to facilitate the castability of the product being designed, or to suit the design to a preferred casting method.