964 resultados para Knoevenagel condensation
Resumo:
We show that coherent phase effects may play a relevant role in the nonlinear propagation of partially incoherent waves, which lead to unexpected processes of condensation, or incoherent soliton generation in instantaneous response nonlinear media. © 2005 OSA.
Resumo:
The fidelity of mitosis is essential for life, and successful completion of this process relies on drastic changes in chromosome organization at the onset of nuclear division. The mechanisms that govern chromosome compaction at every cell division cycle are still far from full comprehension, yet recent studies provide novel insights into this problem, challenging classical views on mitotic chromosome assembly. Here, we briefly introduce various models for chromosome assembly and known factors involved in the condensation process (e.g. condensin complexes and topoisomerase II). We will then focus on a few selected studies that have recently brought novel insights into the mysterious way chromosomes are condensed during nuclear division.
Resumo:
Infrared chemiluminescence (IRCL) studies of cw metal oxidation reactions wherein metal atoms entrained in a carrier gas were mixed with an oxidizer by means of a nozzle system are described. One goal of the work was to determine the vibrational distribution of the product molecule produced by the chemical reaction. In order to observe IRCL it was important to operate the system at the appropriate P-T point in the phase diagram of both the metal and metal salt, otherwise rapid condensation quenched any IRCL that was present. If the nucleation rate was greater 1010 3 than ~ cm-sec-I, then only "black body" radiation could be seen from the reaction. Most of the studies were on the Li/I2 system which is unique in that the phase diagrams of Li and LiI in the P-T ranges of interest are almost identical. This property permitted a relatively easy control with respect to condensation and the measurement of IRCL in the 10-28 um range for the excited LiI molecule.
Resumo:
Context. Within the core accretion scenario of planetary formation, most simulations performed so far always assume the accreting envelope to have a solar composition. From the study of meteorite showers on Earth and numerical simulations, we know that planetesimals must undergo thermal ablation and disruption when crossing a protoplanetary envelope. Thus, once the protoplanet has acquired an atmosphere, not all planetesimals reach the core intact, i.e. the primordial envelope (mainly H and He) gets enriched in volatiles and silicates from the planetesimals. This change of envelope composition during the formation can have a significant effect on the final atmospheric composition and on the formation timescale of giant planets. Aims. We investigate the physical implications of considering the envelope enrichment of protoplanets due to the disruption of icy planetesimals during their way to the core. Particular focus is placed on the effect on the critical core mass for envelopes where condensation of water can occur. Methods. Internal structure models are numerically solved with the implementation of updated opacities for all ranges of metallicities and the software Chemical Equilibrium with Applications to compute the equation of state. This package computes the chemical equilibrium for an arbitrary mixture of gases and allows the condensation of some species, including water. This means that the latent heat of phase transitions is consistently incorporated in the total energy budget. Results. The critical core mass is found to decrease significantly when an enriched envelope composition is considered in the internal structure equations. A particularly strong reduction of the critical core mass is obtained for planets whose envelope metallicity is larger than Z approximate to 0.45 when the outer boundary conditions are suitable for condensation of water to occur in the top layers of the atmosphere. We show that this effect is qualitatively preserved even when the atmosphere is out of chemical equilibrium. Conclusions. Our results indicate that the effect of water condensation in the envelope of protoplanets can severely affect the critical core mass, and should be considered in future studies.
Resumo:
Background: There are few studies indicating the detrimental effects of ibuprofen on sperm fertility potential and DNA integrity. Objective: To determine the effects of Ibuprofen on sperm parameters, chromatin condensation and DNA integrity of mice. Materials and Methods: In this experimental study, 36 adult male mice with average weight 37 gr were divided into three groups, including control (group I, n=12), normal dosage of ibuprofen (group II, n=12) and high dosage (group III, n=12). Ibuprofen with different doses was dissolved in daily water of animals. After 35, 70 and 105 days, the cauda epididymis of mice were cut and incubated in Ham’s F10 media. Sperm samples were analyzed for parameters (motility, morphology and count), DNA integrity (SCD test) and chromatin condensation (chromomycin A3 and Aniline blue staining). Results: After 35 days, in addition to above mentioned sperm parameters, all of the treated mice showed statistically significant increase in spermatozoa with immature chromatin (P<0.05). However, after 70 days, the rate of sperm DNA fragmentation assessed by SCD was increased in group II (66.5±0.7) and the percentage of immature spermatozoa (AB+ and CMA3+) was higher in group III (77.5±0.7 and 49.5±6.3 respectively) than other groups. After 105 days, the AB+ spermatozoa were increased in both normal dose and high dose groups. Conclusion: Ibuprofen may cause a significant reduction in sperm parameters and sperm chromatin/DNA integrity in mice. It should be noted that these deleterious effects are dose-dependent and can be seen in early and late stage of drug treatments.
Resumo:
Characterization of indoor particle sources from 14 residential houses in Brisbane, Australia, was performed. The approximation of PM2.5 and the submicrometre particle number concentrations were measured simultaneously for more than 48 h in the kitchen of all the houses by using a photometer (DustTrak) and a condensation particle counter (CPC), respectively. From the real time indoor particle concentration data and a diary of indoor activities, the indoor particle sources were identified. The study found that among the indoor activities recorded in this study, frying, grilling, stove use, toasting, cooking pizza, smoking, candle vaporizing eucalyptus oil and fan heater use, could elevate the indoor particle number concentration levels by more than five times. The indoor approximation of PM2.5 concentrations could be close to 90 times, 30 times and three times higher than the background levels during grilling, frying and smoking, respectively.
Resumo:
As part of a large study investigating indoor air in residential houses in Brisbane, Australia, the purpose of this work was to quantify indoor exposure to submicrometer particles and PM2.5 for the inhabitants of 14 houses. Particle concentrations were measured simultaneously for more than 48 hours in the kitchens of all the houses by using a condensation particle counter (CPC) and a photometer (DustTrak). The occupants of the houses were asked to fill in a diary, noting the time and duration of any activity occurring throughout the house during measurement, as well as their presence or absence from home. From the time series concentration data and the information about indoor activities, exposure to the inhabitants of the houses was calculated for the entire time they spent at home as well as during indoor activities resulting in particle generation. The results show that the highest median concentration level occurred during cooking periods for both particle number concentration (47.5´103 particles cm-3) and PM2.5 concentration (13.4 mg m-3). The highest residential exposure period was the sleeping period for both particle number exposure (31%) and PM2.5 exposure (45.6%). The percentage of the average residential particle exposure level in total 24h particle exposure level was approximating 70% for both particle number and PM2.5 exposure.
Resumo:
Size distributions of expiratory droplets expelled during coughing and speaking and the velocities of the expiration air jets of healthy volunteers were measured. Droplet size was measured using the Interferometric Mie imaging (IMI) technique while the Particle Image Velocimetry (PIV) technique was used for measuring air velocity. These techniques allowed measurements in close proximity to the mouth and avoided air sampling losses. The average expiration air velocity was 11.7 m/s for coughing and 3.9 m/s for speaking. Under the experimental setting, evaporation and condensation effects had negligible impact on the measured droplet size. The geometric mean diameter of droplets from coughing was 13.5m and it was 16.0m for speaking (counting 1 to 100). The estimated total number of droplets expelled ranged from 947 – 2085 per cough and 112 – 6720 for speaking. The estimated droplet concentrations for coughing ranged from 2.4 - 5.2cm-3 per cough and 0.004 – 0.223 cm-3 for speaking.
Resumo:
A month-long intensive measurement campaign was conducted in March/April 2007 at Agnes Water, a remote coastal site just south of the Great Barrier Reef on the east coast of Australia. Particle and ion size distributions were continuously measured during the campaign. Coastal nucleation events were observed in clean, marine air masses coming from the south-east on 65% of the days. The events usually began at ~10:00 local time and lasted for 1-4 hrs. They were characterised by the appearance of a nucleation mode with a peak diameter of ~10 nm. The freshly nucleated particles grew within 1-4 hrs up to sizes of 20-50 nm. The events occurred when solar intensity was high (~1000 W m-2) and RH was low (~60%). Interestingly, the events were not related to tide height. The volatile and hygroscopic properties of freshly nucleated particles (17-22.5 nm), simultaneously measured with a volatility-hygroscopicity-tandem differential mobility analyser (VH-TDMA), were used to infer chemical composition. The majority of the volume of these particles was attributed to internally mixed sulphate and organic components. After ruling out coagulation as a source of significant particle growth, we conclude that the condensation of sulphate and/or organic vapours was most likely responsible for driving particle growth during the nucleation events. We cannot make any direct conclusions regarding the chemical species that participated in the initial particle nucleation. However, we suggest that nucleation may have resulted from the photo-oxidation products of unknown sulphur or organic vapours emitted from the waters of Hervey Bay, or from the formation of DMS-derived sulphate clusters over the open ocean that were activated to observable particles by condensable vapours emitted from the nutrient rich waters around Fraser Island or Hervey Bay. Furthermore, a unique and particularly strong nucleation event was observed during northerly wind. The event began early one morning (08:00) and lasted almost the entire day resulting in the production of a large number of ~80 nm particles (average modal concentration during the event was 3200 cm-3). The Great Barrier Reef was the most likely source of precursor vapours responsible for this event.
Resumo:
The human health effects following exposure to ultrafine (<100nm) particles (UFPs) produced by fuel combustion, while not completely understood, are generally regarded as detrimental. Road tunnels have emerged as locations where maximum exposure to these particles may occur for the vehicle occupants using them. This study aimed to quantify and investigate the determinants of UFP concentrations in the 4km twin-bore (eastbound and westbound) M5 East tunnel in Sydney, Australia. Sampling was undertaken using a condensation particle counter (CPC) mounted in a vehicle traversing both tunnel bores at various times of day from May through July, 2006. Supplementary measurements were conducted in February, 2008. Over three hundred transects of the tunnel were performed, and these were distributed evenly between the bores. Additional comparative measurements were conducted on a mixed route comprising major roads and shorter tunnels, all within Sydney. Individual trip average UFP concentrations in the M5 East tunnel bores ranged from 5.53 × 104 p cm-3 to 5.95 × 106 p cm-3. Data were sorted by hour of capture, and hourly median trip average (HMA) UFP concentrations ranged from 7.81 × 104 p cm-3 to 1.73 × 106 p cm-3. Hourly median UFP concentrations measured on the mixed route were between 3.71 × 104 p cm-3 and 1.55 × 105 p cm-3. Hourly heavy diesel vehicle (HDV) traffic volume was a very good determinant of UFP concentration in the eastbound tunnel bore (R2 = 0.87), but much less so in the westbound bore (R2 = 0.26). In both bores, the volume of passenger vehicles (i.e. unleaded gasoline-powered vehicles) was a significantly poorer determinant of particle concentration. When compared with similar studies reported previously, the measurements described here were among the highest recorded concentrations, which further highlights the contribution road tunnels may make to the overall UFP exposure of vehicle occupants.
Resumo:
Total deposition of petrol, diesel and environmental tobacco smoke (ETS) aerosols in the human respiratory tract for nasal breathing conditions was computed for 14 nonsmoking volunteers, considering the specific anatomical and respiratory parameters of each volunteer and the specific size distribution for each inhalation experiment. Theoretical predictions were 34.6% for petrol, 24.0% for diesel, and 18.5% for ETS particles. Compared to the experimental results, predicted deposition values were consistently smaller than the measured data (41.4% for petrol, 29.6% for diesel, and 36.2% for ETS particles). The apparent discrepancy between experimental data on total deposition and modeling results may be reconciled by considering the non-spherical shape of the test aerosols by diameter-dependent dynamic shape factors to account for differences between mobility-equivalent and volume-equivalent or thermodynamic diameters. While the application of dynamic shape factors is able to explain the observed differences for petrol and diesel particles, additional mechanisms may be required for ETS particle deposition, such as the size reduction upon inspiration by evaporation of volatile compounds and/or condensation-induced restructuring, and, possibly, electrical charge effects.
Resumo:
Surveillance networks are typically monitored by a few people, viewing several monitors displaying the camera feeds. It is then very difficult for a human operator to effectively detect events as they happen. Recently, computer vision research has begun to address ways to automatically process some of this data, to assist human operators. Object tracking, event recognition, crowd analysis and human identification at a distance are being pursued as a means to aid human operators and improve the security of areas such as transport hubs. The task of object tracking is key to the effective use of more advanced technologies. To recognize an event people and objects must be tracked. Tracking also enhances the performance of tasks such as crowd analysis or human identification. Before an object can be tracked, it must be detected. Motion segmentation techniques, widely employed in tracking systems, produce a binary image in which objects can be located. However, these techniques are prone to errors caused by shadows and lighting changes. Detection routines often fail, either due to erroneous motion caused by noise and lighting effects, or due to the detection routines being unable to split occluded regions into their component objects. Particle filters can be used as a self contained tracking system, and make it unnecessary for the task of detection to be carried out separately except for an initial (often manual) detection to initialise the filter. Particle filters use one or more extracted features to evaluate the likelihood of an object existing at a given point each frame. Such systems however do not easily allow for multiple objects to be tracked robustly, and do not explicitly maintain the identity of tracked objects. This dissertation investigates improvements to the performance of object tracking algorithms through improved motion segmentation and the use of a particle filter. A novel hybrid motion segmentation / optical flow algorithm, capable of simultaneously extracting multiple layers of foreground and optical flow in surveillance video frames is proposed. The algorithm is shown to perform well in the presence of adverse lighting conditions, and the optical flow is capable of extracting a moving object. The proposed algorithm is integrated within a tracking system and evaluated using the ETISEO (Evaluation du Traitement et de lInterpretation de Sequences vidEO - Evaluation for video understanding) database, and significant improvement in detection and tracking performance is demonstrated when compared to a baseline system. A Scalable Condensation Filter (SCF), a particle filter designed to work within an existing tracking system, is also developed. The creation and deletion of modes and maintenance of identity is handled by the underlying tracking system; and the tracking system is able to benefit from the improved performance in uncertain conditions arising from occlusion and noise provided by a particle filter. The system is evaluated using the ETISEO database. The dissertation then investigates fusion schemes for multi-spectral tracking systems. Four fusion schemes for combining a thermal and visual colour modality are evaluated using the OTCBVS (Object Tracking and Classification in and Beyond the Visible Spectrum) database. It is shown that a middle fusion scheme yields the best results and demonstrates a significant improvement in performance when compared to a system using either mode individually. Findings from the thesis contribute to improve the performance of semi-automated video processing and therefore improve security in areas under surveillance.
Resumo:
Silylated layered double hydroxides (LDHs) were synthesized through a surfactant-free method involving an in situ condensation of silane with the surface hydroxyl group of LDHs during its reconstruction in carbonate solution. X-ray diffraction (XRD) patterns showed the silylation reaction occurred on the external surfaces of LDHs layers. The successful silylation was evidenced by 29Si cross-polarization magic-angle spinning nuclear magnetic resonance (29Si CP/MAS NMR) spectroscopy, attenuated total reflection Fourier transform infrared (ATR FTIR) spectroscopy, and infrared emission spectroscopy (IES). The ribbon shaped crystallites with a “rodlike” aggregation were observed through transmission electron microscopy (TEM) images. The aggregation was explained by the T2 and T3 types of linkage between adjacent silane molecules as indicated in the 29Si NMR spectrum. In addition, the silylated products show high thermal stability by maintained Si related bands even when the temperature was increased to 1000 °C as observed in IES spectra.
Resumo:
The School Based Youth Health Nurse Program was established in 1999 by the Queensland Government to fund school nurse positions in Queensland state high schools. Schools were required to apply for a School Based Youth Health Nurse during a five-phase recruitment process, managed by the health districts, and rolled out over four years. The only mandatory selection criterion for the position of School Based Youth Health Nurse was registration as a General Nurse and most School Based Youth Health Nurses are allocated to two state high schools. Currently, there are approximately 115 Full Time Equivalent School Based Youth Health Nurse positions across all Queensland state high schools. The literature review revealed an abundance of information about school nursing. Most of the literature came from the United Kingdom and the United States, who have a different model of school nursing to school based youth health nursing. However, there is literature to suggest school nursing is gradually moving from a disease-focused approach to a social view of health. The noticeable number of articles about, for example, drug and alcohol, mental health, and contemporary sexual health issues, is evidence of this change. Additionally, there is a significant the volume of literature about partnerships and collaboration, much of which is about health education, team teaching and how school nurses and schools do health business together. The surfacing of this literature is a good indication that school nursing is aligning with the broader national health priority areas. More particularly, the literature exposed a small but relevant and current body of research, predominantly from Queensland, about school based youth health nursing. However, there remain significant gaps in the knowledge about school based youth health nursing. In particular, there is a deficit about how School Based Youth Heath Nurses understand the experience of school based youth health nursing. This research aimed to reveal the meaning of the experience of school based youth health nursing. The research question was How do School Based Youth Health Nurses’ understand the experience of school based youth health nursing? This enquiry was instigated because the researcher, who had a positive experience of school based youth health nursing, considered it important to validate other School Based Youth Health Nurses’ experiences. Consequently, a comprehensive use of qualitative research was considered the most appropriate manner to explore this research question. Within this qualitative paradigm, the research framework consists of the epistemology of social constructionism, the theoretical perspective of interpretivism and the approach of phenomenography. After ethical approval was gained, purposeful and snowball sampling was used to recruit a sample of 16 participants. In-depth interviews, which were voluntary, confidential and anonymous, were mostly conducted in public venues and lasted from 40-75 minutes. The researcher also kept a researchers journal as another form of data collection. Data analysis was guided by Dahlgren and Fallsbergs’ (1991, p. 152) seven phases of data analysis which includes familiarization, condensation, comparison, grouping, articulating, labelling and contrasting. The most important finding in this research is the outcome space, which represents the entirety of the experience of school based youth health nursing. The outcome space consists of two components: inside the school environment and outside the school environment. Metaphorically and considered as whole-in-themselves, these two components are not discreet but intertwined with each other. The outcome space consists of eight categories. Each category of description is comprised of several sub-categories of description but as a whole, is a conception of school based youth health nursing. The eight conceptions of school based youth health nursing are: 1. The conception of school based youth health nursing as out there all by yourself. 2. The conception of school based youth health nursing as no real backup. 3. The conception of school based youth health nursing as confronted by many barriers. 4. The conception of school based youth health nursing as hectic and full-on. 5. The conception of school based youth health nursing as working together. 6. The conception of school based youth health nursing as belonging to school. 7. The conception of school based youth health nursing as treated the same as others. 8. The conception of school based youth health nursing as the reason it’s all worthwhile. These eight conceptions of school based youth health nursing are logically related and form a staged hierarchical relationship because they are not equally dependent on each other. The conceptions of school based youth health nursing are grouped according to negative, negative and positive and positive conceptions of school based youth health nursing. The conceptions of school based youth health nursing build on each other, from the bottom upwards, to reach the authorized, or the most desired, conception of school based youth health nursing. This research adds to the knowledge about school nursing in general but especially about school based youth health nursing specifically. Furthermore, this research has operational and strategic implications, highlighted in the negative conceptions of school based youth health nursing, for the School Based Youth Health Nurse Program. The researcher suggests the School Based Youth Health Nurse Program, as a priority, address the operational issues The researcher recommends a range of actions to tackle issues and problems associated with accommodation and information, consultations and referral pathways, confidentiality, health promotion and education, professional development, line management and School Based Youth Health Nurse Program support and school management and community. Strategically, the researcher proposes a variety of actions to address strategic issues, such as the School Based Youth Health Nurse Program vision, model and policy and practice framework, recruitment and retention rates and evaluation. Additionally, the researcher believes the findings of this research have the capacity to spawn a myriad of future research projects. The researcher has identified the most important areas for future research as confidentiality, information, qualifications and health outcomes.