982 resultados para Key derivation function
Resumo:
Ce projet illustre cinq études, mettant l'emphase sur le développement d'une nouvelle approche diagnostique cardiovasculaire afin d'évaluer le niveau d’oxygène contenu dans le myocarde ainsi que sa fonction microvasculaire. En combinant une séquence de résonance magnétique cardiovasculaire (RMC) pouvant détecter le niveau d’oxygène (OS), des manœuvres respiratoires ainsi que des analyses de gaz artériels peuvent être utilisés comme procédure non invasive destinée à induire une réponse vasoactive afin d’évaluer la réserve d'oxygénation, une mesure clé de la fonction vasculaire. Le nombre de tests diagnostiques cardiaques prescrits ainsi que les interventions, sont en pleine expansion. L'imagerie et tests non invasifs sont souvent effectués avant l’utilisation de procédures invasives. L'imagerie cardiaque permet d’évaluer la présence ou absence de sténoses coronaires, un important facteur économique dans notre système de soins de santé. Les techniques d'imagerie non invasives fournissent de l’information précise afin d’identifier la présence et l’emplacement du déficit de perfusion chez les patients présentant des symptômes d'ischémie myocardique. Néanmoins, plusieurs techniques actuelles requièrent la nécessité de radiation, d’agents de contraste ou traceurs, sans oublier des protocoles de stress pharmacologiques ou physiques. L’imagerie RMC peut identifier une sténose coronaire significative sans radiation. De nouvelles tendances d’utilisation de RMC visent à développer des techniques diagnostiques qui ne requièrent aucun facteur de stress pharmacologiques ou d’agents de contraste. L'objectif principal de ce projet était de développer et tester une nouvelle technique diagnostique afin d’évaluer la fonction vasculaire coronarienne en utilisant l' OS-RMC, en combinaison avec des manœuvres respiratoires comme stimulus vasoactif. Ensuite, les objectifs, secondaires étaient d’utilisés l’OS-RMC pour évaluer l'oxygénation du myocarde et la réponse coronaire en présence de gaz artériels altérés. Suite aux manœuvres respiratoires la réponse vasculaire a été validée chez un modèle animal pour ensuite être utilisé chez deux volontaires sains et finalement dans une population de patients atteints de maladies cardiovasculaires. Chez le modèle animal, les manœuvres respiratoires ont pu induire un changement significatif, mesuré intrusivement par débit sanguin coronaire. Il a été démontré qu’en présence d'une sténose coronarienne hémodynamiquement significative, l’OS-RMC pouvait détecter un déficit en oxygène du myocarde. Chez l’homme sain, l'application de cette technique en comparaison avec l'adénosine (l’agent standard) pour induire une vasodilatation coronarienne et les manœuvres respiratoires ont pu induire une réponse plus significative en oxygénation dans un myocarde sain. Finalement, nous avons utilisé les manœuvres respiratoires parmi un groupe de patients atteint de maladies coronariennes. Leurs myocardes étant altérées par une sténose coronaire, en conséquence modifiant ainsi leur réponse en oxygénation. Par la suite nous avons évalué les effets des gaz artériels sanguins sur l'oxygénation du myocarde. Ils démontrent que la réponse coronarienne est atténuée au cours de l’hyperoxie, suite à un stimuli d’apnée. Ce phénomène provoque une réduction globale du débit sanguin coronaire et un déficit d'oxygénation dans le modèle animal ayant une sténose lorsqu’un supplément en oxygène est donné. En conclusion, ce travail a permis d'améliorer notre compréhension des nouvelles techniques diagnostiques en imagerie cardiovasculaire. Par ailleurs, nous avons démontré que la combinaison de manœuvres respiratoires et l’imagerie OS-RMC peut fournir une méthode non-invasive et rentable pour évaluer la fonction vasculaire coronarienne régionale et globale.
Resumo:
Microglial cells are the resident immune cells of central nervous system (CNS) and the major players in neuroinflammation. These cells are also responsible for surveilling the neuronal microenvironment, and upon injury to the CNS they change their morphology and molecular profile and become activated. Activated status is associated with microglia proliferation, migration to injury foci, increased phagocytic capacity, production and release of reactive oxygen species (ROS), cytokines (pro- or anti-inflammatory) and reactive nitrogen species. Microglia activation is crucial for tissue repair in the healthy brain. However, their chronic activation or deregulation might contribute for the pathophysiology of neurodegenerative diseases. A better understanding of the mechanisms underlying microglial cell activation is important for defining targets and develop appropriate therapeutic strategies to control the chronic activation of microglia. It has been observed an increase in profilin (Pfn) mRNA in microglial cells in the rat hippocampus after unilateral ablation of its major extrinsic input, the entorhinal cortex. This observation suggested that Pfn might be involved in microglia activation. Pfn1 is an actin binding protein that controls assembly and disassembly of actin filaments and is important for several cellular processes, including, motility, cell proliferation and survival. Here, we studied the role of Pfn1 in microglial cell function. For that, we used primary cortical microglial cell cultures and microglial cell lines in which we knocked down Pfn1 expression and assessed the activation status of microglia, based on classical activation markers, such as: phagocytosis, glutamate release, reactive oxygen species (ROS), pro- and anti-inflammatory cytokines. We demonstrated that Pfn1 (i) is more active in hypoxia-challenged microglia, (ii) modulates microglia pro- and anti-inflammatory signatures and (iii) plays a critical role in ROS generation in microglia. Altogether, we conclude that Pfn1 is a key protein for microglia homeostasis, playing an essential role in their activation, regardless the polarization into a pro or anti-inflammatory signature.
Resumo:
This analysis paper presents previously unknown properties of some special cases of the Wright function whose consideration is necessitated by our work on probability theory and the theory of stochastic processes. Specifically, we establish new asymptotic properties of the particular Wright function 1Ψ1(ρ, k; ρ, 0; x) = X∞ n=0 Γ(k + ρn) Γ(ρn) x n n! (|x| < ∞) when the parameter ρ ∈ (−1, 0)∪(0, ∞) and the argument x is real. In the probability theory applications, which are focused on studies of the Poisson-Tweedie mixtures, the parameter k is a non-negative integer. Several representations involving well-known special functions are given for certain particular values of ρ. The asymptotics of 1Ψ1(ρ, k; ρ, 0; x) are obtained under numerous assumptions on the behavior of the arguments k and x when the parameter ρ is both positive and negative. We also provide some integral representations and structural properties involving the ‘reduced’ Wright function 0Ψ1(−−; ρ, 0; x) with ρ ∈ (−1, 0) ∪ (0, ∞), which might be useful for the derivation of new properties of members of the power-variance family of distributions. Some of these imply a reflection principle that connects the functions 0Ψ1(−−;±ρ, 0; ·) and certain Bessel functions. Several asymptotic relationships for both particular cases of this function are also given. A few of these follow under additional constraints from probability theory results which, although previously available, were unknown to analysts.
Resumo:
Nuclear erythroid related factor-2 (NRF2) is known to promote cancer therapeutic detoxification and crosstalk with growth promoting pathways. HER2 receptor tyrosine kinase is frequently overexpressed in cancers leading to uncontrolled receptor activation and signaling. A combination of HER2 targeting monoclonal antibodies shows greater anticancer efficacy than the single targeting antibodies, however, its mechanism of action is largely unclear. Here we report novel actions of anti-HER2 drugs, Trastuzumab and Pertuzumab, involving NRF2. HER2 targeting by antibodies inhibited growth in association with persistent generation of reactive oxygen species (ROS), glutathione (GSH) depletion, reduction in NRF2 levels and inhibition of NRF2 function in ovarian cancer cell lines. The combination of antibodies produced more potent effects than single alone; downregulated NRF2 substrates by repressing the Antioxidant Response (AR) pathway with concomitant transcriptional inhibition of NRF2. We showed the antibody combination produced increased methylation at the NRF2 promoter consistent with repression of NRF2 antioxidant function, as HDAC and methylation inhibitors reversed such produced transcriptional effects. These findings demonstrate a novel mechanism and role for NRF2 in mediating the response of cancer cells to the combination of Trastuzumab and Pertuzumab and reinforce the importance of NRF2 in drug resistance and as a key anticancer target.
Resumo:
Observational studies demonstrate strong associations between deficient serum vitamin D (25(OH)D) levels and cardiovascular disease. To further examine the association between vitamin D and hypertension (HTN), data from the 2003-2006 National Health and Nutrition Examination Survey were analyzed to assess whether the association between vitamin D and HTN varies by sufficiency of key co-nutrients necessary for metabolic vitamin D reactions to occur. Logistic regression results demonstrate independent effect modification by calcium, magnesium, and vitamin A on the association between vitamin D and HTN. Among non-pregnant adults with adequate renal function, those with low levels of calcium, magnesium, and vitamin D levels had 1.75 times the odds of HTN compared to those with sufficient vitamin D levels (p = <0.0001). Additionally, participants with low levels of calcium, magnesium, vitamin A, and vitamin D had 5.43 times the odds of HTN compared to those with vitamin D sufficiency (p = 0.0103).
Resumo:
Ce projet illustre cinq études, mettant l'emphase sur le développement d'une nouvelle approche diagnostique cardiovasculaire afin d'évaluer le niveau d’oxygène contenu dans le myocarde ainsi que sa fonction microvasculaire. En combinant une séquence de résonance magnétique cardiovasculaire (RMC) pouvant détecter le niveau d’oxygène (OS), des manœuvres respiratoires ainsi que des analyses de gaz artériels peuvent être utilisés comme procédure non invasive destinée à induire une réponse vasoactive afin d’évaluer la réserve d'oxygénation, une mesure clé de la fonction vasculaire. Le nombre de tests diagnostiques cardiaques prescrits ainsi que les interventions, sont en pleine expansion. L'imagerie et tests non invasifs sont souvent effectués avant l’utilisation de procédures invasives. L'imagerie cardiaque permet d’évaluer la présence ou absence de sténoses coronaires, un important facteur économique dans notre système de soins de santé. Les techniques d'imagerie non invasives fournissent de l’information précise afin d’identifier la présence et l’emplacement du déficit de perfusion chez les patients présentant des symptômes d'ischémie myocardique. Néanmoins, plusieurs techniques actuelles requièrent la nécessité de radiation, d’agents de contraste ou traceurs, sans oublier des protocoles de stress pharmacologiques ou physiques. L’imagerie RMC peut identifier une sténose coronaire significative sans radiation. De nouvelles tendances d’utilisation de RMC visent à développer des techniques diagnostiques qui ne requièrent aucun facteur de stress pharmacologiques ou d’agents de contraste. L'objectif principal de ce projet était de développer et tester une nouvelle technique diagnostique afin d’évaluer la fonction vasculaire coronarienne en utilisant l' OS-RMC, en combinaison avec des manœuvres respiratoires comme stimulus vasoactif. Ensuite, les objectifs, secondaires étaient d’utilisés l’OS-RMC pour évaluer l'oxygénation du myocarde et la réponse coronaire en présence de gaz artériels altérés. Suite aux manœuvres respiratoires la réponse vasculaire a été validée chez un modèle animal pour ensuite être utilisé chez deux volontaires sains et finalement dans une population de patients atteints de maladies cardiovasculaires. Chez le modèle animal, les manœuvres respiratoires ont pu induire un changement significatif, mesuré intrusivement par débit sanguin coronaire. Il a été démontré qu’en présence d'une sténose coronarienne hémodynamiquement significative, l’OS-RMC pouvait détecter un déficit en oxygène du myocarde. Chez l’homme sain, l'application de cette technique en comparaison avec l'adénosine (l’agent standard) pour induire une vasodilatation coronarienne et les manœuvres respiratoires ont pu induire une réponse plus significative en oxygénation dans un myocarde sain. Finalement, nous avons utilisé les manœuvres respiratoires parmi un groupe de patients atteint de maladies coronariennes. Leurs myocardes étant altérées par une sténose coronaire, en conséquence modifiant ainsi leur réponse en oxygénation. Par la suite nous avons évalué les effets des gaz artériels sanguins sur l'oxygénation du myocarde. Ils démontrent que la réponse coronarienne est atténuée au cours de l’hyperoxie, suite à un stimuli d’apnée. Ce phénomène provoque une réduction globale du débit sanguin coronaire et un déficit d'oxygénation dans le modèle animal ayant une sténose lorsqu’un supplément en oxygène est donné. En conclusion, ce travail a permis d'améliorer notre compréhension des nouvelles techniques diagnostiques en imagerie cardiovasculaire. Par ailleurs, nous avons démontré que la combinaison de manœuvres respiratoires et l’imagerie OS-RMC peut fournir une méthode non-invasive et rentable pour évaluer la fonction vasculaire coronarienne régionale et globale.
Resumo:
The survival and descent of cells is universally dependent on maintaining their proteins in a properly folded condition. It is widely accepted that the information for the folding of the nascent polypeptide chain into a native protein is encrypted in the amino acid sequence, and the Nobel Laureate Christian Anfinsen was the first to demonstrate that a protein could spontaneously refold after complete unfolding. However, it became clear that the observed folding rates for many proteins were much slower than rates estimated in vivo. This led to the recognition of required protein-protein interactions that promote proper folding. A unique group of proteins, the molecular chaperones, are responsible for maintaining protein homeostasis during normal growth as well as stress conditions. Chaperonins (CPNs) are ubiquitous and essential chaperones. They form ATP-dependent, hollow complexes that encapsulate polypeptides in two back-to-back stacked multisubunit rings, facilitating protein folding through highly cooperative allosteric articulation. CPNs are usually classified into Group I and Group II. Here, I report the characterization of a novel CPN belonging to a third Group, recently discovered in bacteria. Group III CPNs have close phylogenetic association to the Group II CPNs found in Archaea and Eukarya, and may be a relic of the Last Common Ancestor of the CPN family. The gene encoding the Group III CPN from Carboxydothermus hydrogenoformans and Candidatus Desulforudis audaxviator was cloned in E. coli and overexpressed in order to both characterize the protein and to demonstrate its ability to function as an ATPase chaperone. The opening and closing cycle of the Chy chaperonin was examined via site-directed mutations affecting the ATP binding site at R155. To relate the mutational analysis to the structure of the CPN, the crystal structure of both the AMP-PNP (an ATP analogue) and ADP bound forms were obtained in collaboration with Sun-Shin Cha in Seoul, South Korea. The ADP and ATP binding site substitutions resulted in frozen forms of the structures in open and closed conformations. From this, mutants were designed to validate hypotheses regarding key ATP interacting sites as well as important stabilizing interactions, and to observe the physical properties of the resulting complexes by calorimetry.
Resumo:
International audience
Resumo:
Spiking neural networks - networks that encode information in the timing of spikes - are arising as a new approach in the artificial neural networks paradigm, emergent from cognitive science. One of these new models is the pulsed neural network with radial basis function, a network able to store information in the axonal propagation delay of neurons. Learning algorithms have been proposed to this model looking for mapping input pulses into output pulses. Recently, a new method was proposed to encode constant data into a temporal sequence of spikes, stimulating deeper studies in order to establish abilities and frontiers of this new approach. However, a well known problem of this kind of network is the high number of free parameters - more that 15 - to be properly configured or tuned in order to allow network convergence. This work presents for the first time a new learning function for this network training that allow the automatic configuration of one of the key network parameters: the synaptic weight decreasing factor.
Resumo:
Thesis (Master, Kinesiology & Health Studies) -- Queen's University, 2016-09-27 19:34:16.86
Resumo:
AMP-activated protein kinase (AMPK) is a key regulator of cell energy homeostasis. More recently, it has become apparent that AMPK regulates cell proliferation, migration and inflammation. Previous evidence has suggested that AMPK may influence proliferation and invasion by regulating the pro-proliferative mitogen-activated protein kinases (MAPKs). However, the mechanisms underlying this crosstalk between AMPK and MAPK signalling are not fully understood. As AMPK activation has been reported to have anti-proliferative effects, there has been increasing interest in AMPK activation as a therapeutic target for tumourigenesis. The aim of this study was to investigate whether AMPK activation influenced prostate cancer (PC) cell line proliferation, migration and signalling. Therefore, different PC cell lines were incubated with two structurally-unrelated molecules that activate AMPK by different mechanisms, AICAR and A769662. Both chemicals activated AMPK in a concentration- and time-dependent manner in PC3, DU145 and LNCaP cell lines. AMPK activity as assessed by AMPK activating phosphorylation as well as phosphorylation of the AMPK substrate ACC increased along with tumour severity in PC biopsies. Furthermore, both activators of AMPK decreased cell proliferation and migration in the androgen-independent PC cell lines PC3 and DU145. Inhibition of proliferation by A769662 was attenuated in AMPK α1-/- AMPK α2-/- knockout (KO) mouse embryonic fibroblasts (MEFs) compared to wild type (WT) MEFs, and the inhibitory effect on migration of AICAR lost significance in PC3 cells infected with adenoviruses expressing a dominant negative AMPK α mutant, indicating these effects are partially mediated by AMPK. Furthermore, long-term activation of AMPK was associated with inhibition of both the phosphatidylinositol 3’-kinase/protein kinase B (PI3K/Akt) signalling pathway in addition to the extracellular signal-regulated kinase 1/2 (ERK1/2) signalling pathway. Indeed, the actions of AMPK activators on PC cell line viability were mimicked by selective inhibitors of Akt and ERK1/2 pathways. In contrast to the effects of prolonged incubation with AMPK activators, short-term incubation with AMPK activators had no effect on epidermal growth factor (EGF)-stimulated ERK1/2 phosphorylation in PC cell lines. In addition, AMPK activation did not influence phosphorylation of the other MAPK family members p38 and JNK. Interestingly, both AICAR and A769662 decreased EGF-stimulated ERK5 phosphorylation in PC3, DU145 and LNCaP cells as assessed with an anti-phospho-ERK5 antibody. Further characterisation of this effect indicated that prior stimulation with the AMPK activators had no effect on ERK5 phosphorylation stimulated by transient transfection with a constitutively active ERK5 kinase (MEK5DD), which represents the only known canonical kinase for ERK5. Intriguingly, the pattern of EGF-stimulated ERK5 phosphorylation was distinct from that mediated by MEK5DD activation of ERK5. This finding indicates that AMPK activation inhibits EGF-stimulated ERK5 phosphorylation at a point at or above the level of MEK5, although why EGF and constitutively active MEK5 stimulate markedly different immunoreactive species recognised by the anti-phospho-ERK5 antibody requires further study. A769662 had a tendency to reduce EGF-stimulated ERK5 phosphorylation in WT MEFs, yet was without effect in MEFs lacking AMPK. These data indicate that AMPK may underlie the effect of A769662 to reduce EGF-stimulated ERK5 phosphorylation. Prolonged stimulation of PC cell lines with AICAR or A769662 inhibited EGF-stimulated Akt Ser473 phosphorylation, whereas only incubation with A769662 rapidly inhibited Akt phosphorylation. This difference in the actions of the different AMPK activators may suggest an AMPK-independent effect of A769662. Furthermore, AICAR increased phosphorylation of Akt in WT MEFs, an effect that was absent in MEFs lacking AMPK, indicating that this effect of AICAR may be AMPK-dependent. Taken together, the data presented in this study suggest that AMPK activators markedly inhibit proliferation and migration of PC cell lines, reduce EGF-stimulated ERK1/2 and Akt phosphorylation after prolonged incubation and rapidly inhibit ERK5 phosphorylation. Both AMPK activators exhibit a number of effects that are likely to be independent of AMPK in PC cell lines, although inhibition of ERK1/2, ERK5 and Akt may underlie the effects of AMPK activators on proliferation, viability and migration. Further studies are required to understand the crosstalk between those signalling pathways and their underlying significance in PC progression.
Resumo:
During pregnancy, the maternal cardiovascular system undergoes major adaptation. One of these changes is a 40-50 % increase in circulating blood volume which requires a systemic remodelling of the vasculature in order to regulate maternal blood pressure and maximise blood supply to the developing placenta and fetus. These changes are broadly conserved between humans and rats making them an appropriate pre-clinical model in which to study the underlying mechanisms of pregnancy-dependent cardiovascular remodelling. Whilst women are normally protected against cardiovascular disease; pregnancy marks a period of time where women are susceptible to cardiovascular complications. Cardiovascular disease is the leading cause of maternal mortality in the United Kingdom; in particular hypertensive conditions are among the most common complications of pregnancy. One of the main underlying pathologies of these pregnancy complications is thought to be a failure of the maternal cardiovascular system to adapt. The remodelling of the uterine arteries, which directly supply the maternal-fetal interface, is paramount to a healthy pregnancy. Failure of the uterine arteries to remodel sufficiently can result in a number of obstetric complications such as preeclampsia, fetal growth restriction and spontaneous pregnancy loss. At present, it is poorly understood whether this deficient vascular response is due to a predisposition from existing maternal cardiovascular risk factors, the physiological changes that occur during pregnancy or a combination of both. Previous work in our group employed the stroke prone spontaneously hypertensive rat (SHRSP) as a model to investigate pregnancy-dependent remodelling of the uterine arteries. The SHRSP develops hypertension from 6 weeks of age and can be contrasted with the control strain, the Wistar Kyoto (WKY) rat. The phenotype of the SHRSP is therefore reflective of the clinical situation of maternal chronic hypertension during pregnancy. We showed that the SHRSP exhibited a deficient uterine artery remodelling response with respect to both structure and function accompanied by a reduction in litter size relative to the WKY at gestational day (GD) 18. A previous intervention study using nifedipine in the SHRSP achieved successful blood pressure reduction from 6 weeks of age and throughout pregnancy; however uterine artery remodelling and litter size at GD18 was not improved. We concluded that the abnormal uterine artery remodelling present in the SHRSP was independent of chronic hypertension. From these findings, we hypothesised that the SHRSP could be a novel model of spontaneously deficient uterine artery remodelling in response to pregnancy which was underpinned by other as yet unidentified cardiovascular risk factors. In Chapter 1 of this thesis, I have characterised the maternal, placental and fetal phenotype in pregnant (GD18) SHRSP and WKY. The pregnant SHRSP exhibit features of left ventricular hypertrophy in response to pregnancy and altered expression of maternal plasma biomarkers which have been previously associated with hypertension in human pregnancy. I developed a protocol for accurate dissection of the rat uteroplacental unit using qPCR probes specific for each layer. This allowed me to make an accurate and specific statement about gene expression in the SHRSP GD18 placenta; where oxidative stress related gene markers were increased in the vascular compartments. The majority of SHRSP placenta presented at GD18 with a blackened ring which encircled the tissue. Further investigation of the placenta using western blot for caspase 3 cleavage determined that this was likely due to increased cell death in the SHRSP placenta. The SHRSP also presented with a loss of one particular placental cell type at GD18: the glycogen cells. These cells could have been the target of cell death in the SHRSP placenta or were utilised early in pregnancy as a source of energy due to the deficient uterine artery blood supply. Blastocyst implantation was not altered but resorption rate was increased between SHRSP and WKY; indicating that the reduction in litter size in the SHRSP was primarily due to late (>GD14) pregnancy loss. Fetal growth was not restricted in SHRSP which led to the conclusion that SHRSP sacrifice part of their litter to deliver a smaller number of healthier pups. Activation of the immune system is a common pathway that has been implicated in the development of both hypertension and adverse pregnancy outcome. In Chapter 2, I proposed that this may be a mechanism of interest in SHRSP pregnancy and measured the pro-inflammatory cytokine, TNFα, as a marker of inflammation in pregnant SHRSP and WKY and in the placentas from these animals. TNFα was up-regulated in maternal plasma and urine from the GD18 SHRSP. In addition, TNFα release was increased from the GD18 SHRSP placenta as was the expression of the pro-inflammatory TNFα receptor 1 (Tnfr1). In order to investigate whether this excess TNFα was detrimental to SHRSP pregnancy, a vehicle-controlled intervention study using etanercept (a monoclonal antibody which works as a TNFα antagonist) was carried out. Etanercept treatment at GD0, 6, 12 and 18 resulted in an improvement in pregnancy outcome in the SHRSP with an increased litter size and reduced resorption rate. Furthermore, there was an improved uterine artery function in GD18 SHRSP treated with etanercept which was associated with an improved uterine artery blood flow over the course of gestation. In Chapter 3, I sought to identify the source of this detrimental excess of TNFα by designing a panel for maternal leukocytes in the blood and placenta at GD18. A population of CD3- CD161+ cells, which are defined as rat natural killer (NK) cells, were increased in number in the SHRSP. Intracellular flow cytometry also identified this cell type as a source of excess TNFα in blood and placenta from pregnant SHRSP. I then went on to evaluate the effects of etanercept treatment on these CD3- CD161+ cells and showed that etanercept reduced the expression of CD161 and the cytotoxic molecule, granzyme B, in the NK cells. Thus, etanercept limits the cytotoxicity and potential damaging effect of these NK cells in the SHRSP placenta. Analysing the urinary peptidome has clinical potential to identify novel pathways involved with disease and/or to develop biomarker panels to aid and stratify diagnosis. In Chapter 4, I utilised the SHRSP as a pre-clinical model to identify novel urinary peptides associated with hypertensive pregnancy. Firstly, a characterisation study was carried out in the kidney of the WKY and SHRSP. Urine samples from WKY and SHRSP taken at pre-pregnancy, mid-pregnancy (GD12) and late pregnancy (GD18) were used in the peptidomic screen. In order to capture peptides which were markers of hypertensive pregnancy from the urinary peptidomic data, I focussed on those that were only changed in a strain dependent manner at GD12 and 18 and not pre-pregnancy. Peptide fragments from the uromodulin protein were identified from this analysis to be increased in pregnant SHRSP relative to pregnant WKY. This increase in uromodulin was validated at the SHRSP kidney level using qPCR. Uromodulin has previously been identified to be a candidate molecule involved in systemic arterial hypertension but not in hypertensive pregnancy thus is a promising target for further study. In summary, we have characterised the SHRSP as the first model of maternal chronic hypertension during pregnancy and identified that inflammation mediated by TNFα and NK cells plays a key role in the pathology. The evidence presented in this thesis establishes the SHRSP as a pre-clinical model for pregnancy research and can be continued into clinical studies in pregnant women with chronic hypertension which remains an area of unmet research need.
Resumo:
IKK epsilon (IKKε) is induced by the activation of nuclear factor-κB (NF-κB). Whole-body IKKε knockout mice on a high-fat diet (HFD) were protected from insulin resistance and showed altered energy balance. We demonstrate that IKKε is expressed in neurons and is upregulated in the hypothalamus of obese mice, contributing to insulin and leptin resistance. Blocking IKKε in the hypothalamus of obese mice with CAYMAN10576 or small interfering RNA decreased NF-κB activation in this tissue, relieving the inflammatory environment. Inhibition of IKKε activity, but not TBK1, reduced IRS-1(Ser307) phosphorylation and insulin and leptin resistance by an improvement of the IR/IRS-1/Akt and JAK2/STAT3 pathways in the hypothalamus. These improvements were independent of body weight and food intake. Increased insulin and leptin action/signaling in the hypothalamus may contribute to a decrease in adiposity and hypophagia and an enhancement of energy expenditure accompanied by lower NPY and increased POMC mRNA levels. Improvement of hypothalamic insulin action decreases fasting glycemia, glycemia after pyruvate injection, and PEPCK protein expression in the liver of HFD-fed and db/db mice, suggesting a reduction in hepatic glucose production. We suggest that IKKε may be a key inflammatory mediator in the hypothalamus of obese mice, and its hypothalamic inhibition improves energy and glucose metabolism.
Resumo:
The aim was to evaluate the relationship between orofacial function, dentofacial morphology, and bite force in young subjects. Three hundred and sixteen subjects were divided according to dentition stage (early, intermediate, and late mixed and permanent dentition). Orofacial function was screened using the Nordic Orofacial Test-Screening (NOT-S). Orthodontic treatment need, bite force, lateral and frontal craniofacial dimensions and presence of sleep bruxism were also assessed. The results were submitted to descriptive statistics, normality and correlation tests, analysis of variance, and multiple linear regression to test the relationship between NOT-S scores and the studied independent variables. The variance of NOT-S scores between groups was not significant. The evaluation of the variables that significantly contributed to NOT-S scores variation showed that age and presence of bruxism related to higher NOT-S total scores, while the increase in overbite measurement and presence of closed lip posture related to lower scores. Bite force did not show a significant relationship with scores of orofacial dysfunction. No significant correlations between craniofacial dimensions and NOT-S scores were observed. Age and sleep bruxism were related to higher NOT-S scores, while the increase in overbite measurement and closed lip posture contributed to lower scores of orofacial dysfunction.
Resumo:
In this study, we investigated the effect of low density lipoprotein receptor (LDLr) deficiency on gap junctional connexin 36 (Cx36) islet content and on the functional and growth response of pancreatic beta-cells in C57BL/6 mice fed a high-fat (HF) diet. After 60 days on regular or HF diet, the metabolic state and morphometric islet parameters of wild-type (WT) and LDLr-/- mice were assessed. HF diet-fed WT animals became obese and hypercholesterolaemic as well as hyperglycaemic, hyperinsulinaemic, glucose intolerant and insulin resistant, characterizing them as prediabetic. Also they showed a significant decrease in beta-cell secretory response to glucose. Overall, LDLr-/- mice displayed greater susceptibility to HF diet as judged by their marked cholesterolaemia, intolerance to glucose and pronounced decrease in glucose-stimulated insulin secretion. HF diet induced similarly in WT and LDLr-/- mice, a significant decrease in Cx36 beta-cell content as revealed by immunoblotting. Prediabetic WT mice displayed marked increase in beta-cell mass mainly due to beta-cell hypertrophy/replication. Nevertheless, HF diet-fed LDLr-/- mice showed no significant changes in beta-cell mass, but lower islet-duct association (neogenesis) and higher beta-cell apoptosis index were seen as compared to controls. The higher metabolic susceptibility to HF diet of LDLr-/- mice may be explained by a deficiency in insulin secretory response to glucose associated with lack of compensatory beta-cell expansion.