220 resultados para Kaon-Elektroduktion,Seltsamkeit,SiPM
Resumo:
The OPERA detector, designed to search for νμ → ντ oscillations in the CNGS beam, is located in the underground Gran Sasso laboratory, a privileged location to study TeV-scale cosmic rays. For the analysis here presented, the detector was used to measure the atmospheric muon charge ratio in the TeV region. OPERA collected chargeseparated cosmic ray data between 2008 and 2012. More than 3 million atmospheric muon events were detected and reconstructed, among which about 110000 multiple muon bundles. The charge ratio Rμ ≡ Nμ+/Nμ− was measured separately for single and for multiple muon events. The analysis exploited the inversion of the magnet polarity which was performed on purpose during the 2012 Run. The combination of the two data sets with opposite magnet polarities allowedminimizing systematic uncertainties and reaching an accurate determination of the muon charge ratio. Data were fitted to obtain relevant parameters on the composition of primary cosmic rays and the associated kaon production in the forward fragmentation region. In the surface energy range 1–20 TeV investigated by OPERA, Rμ is well described by a parametric model including only pion and kaon contributions to themuon flux, showing no significant contribution of the prompt component. The energy independence supports the validity of Feynman scaling in the fragmentation region up to 200 TeV/nucleon primary energy.
Resumo:
The T2K experiment has reported the first observation of the appearance of electron neutrinos in a muon neutrino beam. The main and irreducible background to the appearance signal comes from the presence in the neutrino beam of a small intrinsic component of electron neutrinos originating from muon and kaon decays. In T2K, this component is expected to represent 1.2% of the total neutrino flux. A measurement of this component using the near detector (ND280), located 280 m from the target, is presented. The charged current interactions of electron neutrinos are selected by combining the particle identification capabilities of both the time projection chambers and electromagnetic calorimeters of ND280. The measured ratio between the observed electron neutrino beam component and the prediction is 1.01±0.10 providing a direct confirmation of the neutrino fluxes and neutrino cross section modeling used for T2K neutrino oscillation analyses. Electron neutrinos coming from muons and kaons decay are also separately measured, resulting in a ratio with respect to the prediction of 0.68±0.30 and 1.10±0.14 , respectively.
Resumo:
This paper presents a measurement of the charged current interaction rate of the electron neutrino beam component of the beam above 1.5 GeV using the large fiducial mass of the T2K π0 detector. The predominant portion of the νe flux (∼85%) at these energies comes from kaon decays. The measured ratio of the observed beam interaction rate to the predicted rate in the detector with water targets filled is 0.89 ± 0.08 (stat.) ± 0.11 (sys.), and with the water targets emptied is 0.90 ± 0.09 (stat.) ± 0.13 (sys.). The ratio obtained for the interactions on water only from an event subtraction method is 0.87 ± 0.33 (stat.) ± 0.21 (sys.). This is the first measurement of the interaction rate of electron neutrinos on water, which is particularly of interest to experiments with water Cherenkov detectors.
Resumo:
The AEgIS experiment is an interdisciplinary collaboration between atomic, plasma and particle physicists, with the scientific goal of performing the first precision measurement of the Earth's gravitational acceleration on antimatter. The principle of the experiment is as follows: cold antihydrogen atoms are synthesized in a Penning-Malmberg trap and are Stark accelerated towards a moiré deflectometer, the classical counterpart of an atom interferometer, and annihilate on a position sensitive detector. Crucial to the success of the experiment is an antihydrogen detector that will be used to demonstrate the production of antihydrogen and also to measure the temperature of the anti-atoms and the creation of a beam. The operating requirements for the detector are very challenging: it must operate at close to 4 K inside a 1 T solenoid magnetic field and identify the annihilation of the antihydrogen atoms that are produced during the 1 μs period of antihydrogen production. Our solution—called the FACT detector—is based on a novel multi-layer scintillating fiber tracker with SiPM readout and off the shelf FPGA based readout system. This talk will present the design of the FACT detector and detail the operation of the detector in the context of the AEgIS experiment.
Resumo:
A small Positron Emission Tomography demonstrator based on LYSO slabs and Silicon Photomultiplier matrices is under construction at the University and INFN of Pisa. In this paper we present the characterization results of the read-out electronics and of the detection system. Two SiPM matrices, composed by 8 × 8 SiPM pixels, 1.5 mm pitch, have been coupled one to one to a LYSO crystals array. Custom Front-End ASICs were used to read the 64 channels of each matrix. Data from each Front-End were multiplexed and sent to a DAQ board for the digital conversion; a motherboard collects the data and communicates with a host computer through a USB port. Specific tests were carried out on the system in order to assess its performance. Futhermore we have measured some of the most important parameters of the system for PET application.
Resumo:
We are investigating the performances of a data acquisition system for Time of Flight PET, based on LYSO crystal slabs and 64 channels Silicon Photomultipliers matrices (1.2 cm2 of active area each). Measurements have been performed to test the timing capability of the detection system (SiPM matices coupled to a LYSO slab and the read-out electronics) with both test signal and radioactive source.
Resumo:
Esta tesis recoje un trabajo experimental centrado en profundizar sobre el conocimiento de los bloques detectores monolíticos como alternativa a los detectores segmentados para tomografía por emisión de positrones (Positron Emission Tomography, PET). El trabajo llevado a cabo incluye el desarrollo, la caracterización, la puesta a punto y la evaluación de prototipos demostradores PET utilizando bloques monolíticos de ortosilicato de lutecio ytrio dopado con cerio (Cerium-Doped Lutetium Yttrium Orthosilicate, LYSO:Ce) usando sensores compatibles con altos campos magnéticos, tanto fotodiodos de avalancha (Avalanche Photodiodes, APDs) como fotomultiplicadores de silicio (Silicon Photomultipliers, SiPMs). Los prototipos implementados con APDs se construyeron para estudiar la viabilidad de un prototipo PET de alta sensibilidad previamente simulado, denominado BrainPET. En esta memoria se describe y caracteriza la electrónica frontal integrada utilizada en estos prototipos junto con la electrónica de lectura desarrollada específicamente para los mismos. Se muestran los montajes experimentales para la obtención de las imágenes tomográficas PET y para el entrenamiento de los algoritmos de red neuronal utilizados para la estimación de las posiciones de incidencia de los fotones γ sobre la superficie de los bloques monolíticos. Con el prototipo BrainPET se obtuvieron resultados satisfactorios de resolución energética (13 % FWHM), precisión espacial de los bloques monolíticos (~ 2 mm FWHM) y resolución espacial de la imagen PET de 1,5 - 1,7 mm FWHM. Además se demostró una capacidad resolutiva en la imagen PET de ~ 2 mm al adquirir simultáneamente imágenes de fuentes radiactivas separadas a distancias conocidas. Sin embargo, con este prototipo se detectaron también dos limitaciones importantes. En primer lugar, se constató una falta de flexibilidad a la hora de trabajar con un circuito integrado de aplicación específica (Application Specific Integrated Circuit, ASIC) cuyo diseño electrónico no era propio sino comercial, unido al elevado coste que requieren las modificaciones del diseño de un ASIC con tales características. Por otra parte, la caracterización final de la electrónica integrada del BrainPET mostró una resolución temporal con amplio margen de mejora (~ 13 ns FWHM). Tomando en cuenta estas limitaciones obtenidas con los prototipos BrainPET, junto con la evolución tecnológica hacia matrices de SiPM, el conocimiento adquirido con los bloques monolíticos se trasladó a la nueva tecnología de sensores disponible, los SiPMs. A su vez se inició una nueva estrategia para la electrónica frontal, con el ASIC FlexToT, un ASIC de diseño propio basado en un esquema de medida del tiempo sobre umbral (Time over Threshold, ToT), en donde la duración del pulso de salida es proporcional a la energía depositada. Una de las características más interesantes de este esquema es la posibilidad de manejar directamente señales de pulsos digitales, en lugar de procesar la amplitud de las señales analógicas. Con esta arquitectura electrónica se sustituyen los conversores analógicos digitales (Analog to Digital Converter, ADCs) por conversores de tiempo digitales (Time to Digital Converter, TDCs), pudiendo implementar éstos de forma sencilla en matrices de puertas programmable ‘in situ’ (Field Programmable Gate Array, FPGA), reduciendo con ello el consumo y la complejidad del diseño. Se construyó un nuevo prototipo demostrador FlexToT para validar dicho ASIC para bloques monolíticos o segmentados. Se ha llevado a cabo el diseño y caracterización de la electrónica frontal necesaria para la lectura del ASIC FlexToT, evaluando su linealidad y rango dinámico, el comportamiento frente a ruido así como la no linealidad diferencial obtenida con los TDCs implementados en la FPGA. Además, la electrónica presentada en este trabajo es capaz de trabajar con altas tasas de actividad y de discriminar diferentes centelleadores para aplicaciones phoswich. El ASIC FlexToT proporciona una excelente resolución temporal en coincidencia para los eventos correspondientes con el fotopico de 511 keV (128 ps FWHM), solventando las limitaciones de resolución temporal del prototipo BrainPET. Por otra parte, la resolución energética con bloques monolíticos leidos por ASICs FlexToT proporciona una resolución energética de 15,4 % FWHM a 511 keV. Finalmente, se obtuvieron buenos resultados en la calidad de la imagen PET y en la capacidad resolutiva del demostrador FlexToT, proporcionando resoluciones espaciales en el centro del FoV en torno a 1,4 mm FWHM. ABSTRACT This thesis is focused on the development of experimental activities used to deepen the knowledge of monolithic detector blocks as an alternative to segmented detectors for Positron Emission Tomography (PET). It includes the development, characterization, setting up, running and evaluation of PET demonstrator prototypes with monolithic detector blocks of Cerium-doped Lutetium Yttrium Orthosilicate (LYSO:Ce) using magnetically compatible sensors such as Avalanche Photodiodes (APDs) and Silicon Photomultipliers (SiPMs). The prototypes implemented with APDs were constructed to validate the viability of a high-sensitivity PET prototype that had previously been simulated, denominated BrainPET. This work describes and characterizes the integrated front-end electronics used in these prototypes, as well as the electronic readout system developed especially for them. It shows the experimental set-ups to obtain the tomographic PET images and to train neural networks algorithms used for position estimation of photons impinging on the surface of monolithic blocks. Using the BrainPET prototype, satisfactory energy resolution (13 % FWHM), spatial precision of monolithic blocks (~ 2 mm FWHM) and spatial resolution of the PET image (1.5 – 1.7 mm FWHM) in the center of the Field of View (FoV) were obtained. Moreover, we proved the imaging capabilities of this demonstrator with extended sources, considering the acquisition of two simultaneous sources of 1 mm diameter placed at known distances. However, some important limitations were also detected with the BrainPET prototype. In the first place, it was confirmed that there was a lack of flexibility working with an Application Specific Integrated Circuit (ASIC) whose electronic design was not own but commercial, along with the high cost required to modify an ASIC design with such features. Furthermore, the final characterization of the BrainPET ASIC showed a timing resolution with room for improvement (~ 13 ns FWHM). Taking into consideration the limitations obtained with the BrainPET prototype, along with the technological evolution in magnetically compatible devices, the knowledge acquired with the monolithic blocks were transferred to the new technology available, the SiPMs. Moreover, we opted for a new strategy in the front-end electronics, the FlexToT ASIC, an own design ASIC based on a Time over Threshold (ToT) scheme. One of the most interesting features underlying a ToT architecture is the encoding of the analog input signal amplitude information into the duration of the output signals, delivering directly digital pulses. The electronic architecture helps substitute the Analog to Digital Converters (ADCs) for Time to Digital Converters (TDCs), and they are easily implemented in Field Programmable Gate Arrays (FPGA), reducing the consumption and the complexity of the design. A new prototype demonstrator based on SiPMs was implemented to validate the FlexToT ASIC for monolithic or segmented blocks. The design and characterization of the necessary front-end electronic to read-out the signals from the ASIC was carried out by evaluating its linearity and dynamic range, its performance with an external noise signal, as well as the differential nonlinearity obtained with the TDCs implemented in the FPGA. Furthermore, the electronic presented in this work is capable of working at high count rates and discriminates different phoswich scintillators. The FlexToT ASIC provides an excellent coincidence time resolution for events that correspond to 511 keV photopeak (128 ps FWHM), resolving the limitations of the poor timing resolution of the BrainPET prototype. Furthermore, the energy resolution with monolithic blocks read by FlexToT ASICs provides an energy resolution of 15.4 % FWHM at 511 keV. Finally, good results were obtained in the quality of the PET image and the resolving power of the FlexToT demonstrator, providing spatial resolutions in the centre of the FoV at about 1.4 mm FWHM.
Resumo:
The research is partially supported by Russian Foundation for Basic Research (grants 06-01-81005 and 07-01- 00053)
Resumo:
The single spin asymmetry, ALT ′, and the polarized structure function, σ LT′, for the p( e&ar; , e′K +)Λ reaction in the resonance region have been measured and extracted using the CEBAF Large Acceptance Spectrometer (CLAS) at Jefferson Lab. Data were taken at an electron beam energy of 2.567 GeV. The large acceptance of CLAS allows for full azimuthal angle coverage over a large range of center-of-mass scattering angles. Results were obtained that span a range in Q 2 from 0.5 to 1.3 GeV2 and W from threshold up to 2.1 GeV and were compared to existing theoretical calculations. The polarized structure function is sensitive to the interferences between various resonant amplitudes, as well as to resonant and non-resonant amplitudes. This measurement is essential for understanding the structure of nucleons and searching for previously undetected nucleon excited states (resonances) predicted by quark models. The W dependence of the σ LT′ in the kinematic regions dominated by s and u channel exchange (cos qcmk = −0.50, −0.167, 0.167) indicated possible resonance structures not predicted by theoretical calculations. The σLT ′ behavior around W = 1.875 GeV could be the signature of a resonance predicted by the quark models and possibly seen in photoproduction. In the very forward angles where the reaction is dominated by the t-channel, the average σLT ′ was zero. There was no indication of the interference between resonances or resonant and non-resonant amplitudes. This might be indicating the dominance of a single t-channel exchange. Study of the sensitivity of the fifth structure function data to the resonance around 1900 MeV showed that these data were highly sensitive to the various assumptions of the models for the quantum number of this resonance. This project was part of a larger CLAS program to measure cross sections and polarization observables for kaon electroproduction in the nucleon resonance region. ^
Resumo:
Questa tesi si inserisce nell’ambito del progetto WA104-NESSiE al CERN per il quale era richiesto lo sviluppo di un tracciatore di particelle cariche da utilizzare in presenza di campi magnetici e avente una risoluzione sulla posizione ricostruita di 1-2 mm. Il lavoro di tesi ha riguardato l'analisi dei dati raccolti con un prototipo del tracciatore composto da barre di scintillatori a sezione triangolare, accoppiati a SiPM i cui segnali sono acquisiti in modalità analogica. Il prototipo è stato esposto a particelle cariche presso la linea di fascio T9 del PS del CERN nel maggio 2016. La catena di analisi è stata validata con dati provenienti da una simulazione Monte Carlo basata su Geant4 che fornisce la risposta del tracciatore al passaggio di particelle cariche (pioni e muoni) a diversi impulsi (1-10 GeV/c). Successivamente, è stata fatta un'analisi preliminare dei dati reali e un confronto con la simulazione Monte Carlo. La risoluzione ottenuta per pioni di 5 GeV è di ∼ 2 mm, compatibile con il valore ottenuto dalla simulazione Monte Carlo di ∼ 1.5 mm. Questi risultati sono stati ricavati analizzando una frazione degli eventi acquisiti durante il test beam. Una misura più accurata della risoluzione del tracciatore può essere ottenuta introducendo alcune correzioni, come ad esempio l’allineamento dei piani, la ricalibrazione dei segnali dei singoli canali e, infine, analizzando l’intero campione.