984 resultados para Ionized electrons
Resumo:
The integrable open-boundary conditions for the Bariev model of three coupled one-dimensional XY spin chains are studied in the framework of the boundary quantum inverse scattering method. Three kinds of diagonal boundary K-matrices leading to nine classes of possible choices of boundary fields are found and the corresponding integrable boundary terms are presented explicitly. The boundary Hamiltonian is solved by using the coordinate Bethe ansatz technique and the Bethe ansatz equations are derived. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The formation of radicals in poly(vinyl alcohol), PVA, powder irradiated at 77 K by gamma -rays and the transformations of these radicals during photolysis with visible wavelengths and on thermal annealing have been studied. After irradiation a four-line ESR spectrum was observed. It was assigned to a triplet of the C-alpha-radical (38%), with a splitting of 3.27 mT, superimposed on a doublet (62%) with a splitting of 2.7 mT. The doublet appears to be composed of two radicals, one of which is photo-bleachable (58%) and the other which is not photo-bleachable (42%). This suggests that the latter radical is a neutral radical. The photo-bleachable component of the doublet has been assigned to a carbonyl anion radical. but the second doublet due to a neutral radical is unassigned. The total G-value for formation of radicals at 77 K was found to be 2.41 +/- 0.03. Upon illumination with visible light, the anion radicals were removed and the doublet components or the spectrum diminished in intensity, while the three-line spectrum of the C-alpha-radical became more clearly visible. This transition was due to the photo-detachment of electrons from traps which were proposed to be located on carbonyl groups in the polymer resulting from incomplete hydrolysis of the vinyl acetate. The photo-decay of the anion radicals could be satisfactorily described by a two-stage process. The first stage comprised the decay of approximately 80% of the anion radicals present, while the second stage was associated with the decay of the remaining 20%. Subsequent thermal annealing of a photolysed sample to 290 K led to a change in the shape of the spectrum to form a more clearly defined triplet, As the doublet of the neutral radical decays on thermal annealing between 150 and 250K, the C-alpha-radical is formed. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
The use of gate-to-drain capacitance (C-gd) measurement as a tool to characterize hot-carrier-induced charge centers in submicron n- and p-MOSFET's has been reviewed and demonstrated. By analyzing the change in C-gd measured at room and cryogenic temperature before and after high gate-to-drain transverse field (high field) and maximum substrate current (I-bmax) stress, it is concluded that the degradation was found to be mostly due to trapping of majority carriers and generation of interface states. These interface states were found to be acceptor states at top half of band gap for n-MOSFETs and donor states at bottom half of band gap for p-MOSFETs. In general, hot electrons are more likely to be trapped in gate oxide as compared to hot holes while the presence of hot holes generates more interface states. Also, we have demonstrated a new method for extracting the spatial distribution of oxide trapped charge, Q(ot), through gate-to-substrate capacitance (C-gb) measurement. This method is simple to implement and does not require additional information from simulation or detailed knowledge of the device's structure. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A new integrable model which is a variant of the one-dimensional Hubbard model is proposed. The integrability of the model is verified by presenting the associated quantum R-matrix which satisfies the Yang-Baxter equation. We argue that the new model possesses the SO(4) algebra symmetry, which contains a representation of the eta-pairing SU(2) algebra and a spin SU(2) algebra. Additionally, the algebraic Bethe ansatz is studied by means of the quantum inverse scattering method. The spectrum of the Hamiltonian, eigenvectors, as well as the Bethe ansatz equations, are discussed. (C) 2002 American Institute of Physics.
Resumo:
We consider the possibility that the electrons injected into organic field-effect transistors are strongly correlated. A single layer of acenes can be modeled by a Hubbard Hamiltonian similar to that used for the κ-(BEDT-TTF)2X family of organic superconductors. The injected electrons do not necessarily undergo a transition to a Mott insulator state as they would in bulk crystals when the system is half-filled. We calculate the fillings needed for obtaining insulating states in the framework of the slave-boson theory and in the limit of large Hubbard repulsion U. We also suggest that these Mott states are unstable above some critical interlayer coupling or long-range Coulomb interaction.
Resumo:
Direct comparisons between photosynthetic O-2 evolution rate and electron transport rate (ETR) were made in situ over 24 h using the benthic macroalga Ulva lactuca (Chlorophyta), growing and measured at a depth of 1.8 m, where the midday irradiance rose to 400-600 mumol photons m(-2) s(-1). O-2 exchange was measured with a 5-chamber data-logging apparatus and ETR with a submersible pulse amplitude modulated (PAM) fluorometer (Diving-PAM). Steady-state quantum yield ((Fm'-Ft)/Fm') decreased from 0.7 during the morning to 0.45 at midday, followed by some recovery in the late afternoon. At low to medium irradiances (0-300 mumol photons m(-2) s(-1)), there was a significant correlation between O-2 evolution and ETR, but at higher irradiances, ETR continued to increase steadily, while O-2 evolution tended towards an asymptote. However at high irradiance levels (600-1200 mumol photons m-(2) s(-1)) ETR was significantly lowered. Two methods of measuring ETR, based on either diel ambient light levels and fluorescence yields or rapid light curves, gave similar results at low to moderate irradiance levels. Nutrient enrichment (increases in [NO3-], [NH4+] and [HPO42-] of 5- to 15-fold over ambient concentrations) resulted in an increase, within hours, in photosynthetic rates measured by both ETR and O-2 evolution techniques. At low irradiances, approximately 6.5 to 8.2 electrons passed through PS II during the evolution of one molecule of O-2, i.e., up to twice the theoretical minimum number of four. However, in nutrient-enriched treatments this ratio dropped to 5.1. The results indicate that PAM fluorescence can be used as a good indication of the photosynthetic rate only at low to medium irradiances.
Resumo:
Motivated by recent experiments on electric transport through single molecules and quantum dots, we investigate a model for transport that allows for significant coupling between the electrons and a boson mode isolated on the molecule or dot. We focus our attention on the temperature-dependent properties of the transport. In the Holstein picture for polaronic transport in molecular crystals the temperature dependence of the conductivity exhibits a crossover from coherent (band) to incoherent (hopping) transport. Here, the temperature dependence of the differential conductance on resonance does not show such a crossover, but is mostly determined by the lifetime of the resonant level on the molecule or dot.
Resumo:
A systematic method for constructing trigonometric R-matrices corresponding to the (multiplicity-free) tensor product of any two affinizable representations of a quantum algebra or superalgebra has been developed by the Brisbane group and its collaborators. This method has been referred to as the Tensor Product Graph Method. Here we describe applications of this method to untwisted and twisted quantum affine superalgebras.
Resumo:
Intervalley interference between degenerate conduction band minima has been shown to lead to oscillations in the exchange energy between neighboring phosphorus donor electron states in silicon [B. Koiller, X. Hu, and S. Das Sarma, Phys. Rev. Lett. 88, 027903 (2002); Phys. Rev. B 66, 115201 (2002)]. These same effects lead to an extreme sensitivity of the exchange energy on the relative orientation of the donor atoms, an issue of crucial importance in the construction of silicon-based spin quantum computers. In this article we calculate the donor electron exchange coupling as a function of donor position incorporating the full Bloch structure of the Kohn-Luttinger electron wave functions. It is found that due to the rapidly oscillating nature of the terms they produce, the periodic part of the Bloch functions can be safely ignored in the Heitler-London integrals as was done by Koiller, Hu, and Das Sarma, significantly reducing the complexity of calculations. We address issues of fabrication and calculate the expected exchange coupling between neighboring donors that have been implanted into the silicon substrate using an 15 keV ion beam in the so-called top down fabrication scheme for a Kane solid-state quantum computer. In addition, we calculate the exchange coupling as a function of the voltage bias on control gates used to manipulate the electron wave functions and implement quantum logic operations in the Kane proposal, and find that these gate biases can be used to both increase and decrease the magnitude of the exchange coupling between neighboring donor electrons. The zero-bias results reconfirm those previously obtained by Koiller, Hu, and Das Sarma.
Resumo:
We investigate coherent electron transport through a parallel circuit of two quantum dots (QDs), each of which has a single tunable. energy level. Electrons tunnelling via each dot from the left lead interfere with each other at the right lead. It is shown that due to the quantum interference of tunnelling electrons the double QD device is magnetically polarized by coherent circulation of electrons on the closed path through the dots and the leads. By varying the energy level of each dot one can make the magnetic states of the device be up-, non- or down-polarized. It is shown that for experimentally accessible temperatures and applied biases the magnetic polarization currents Should be sufficiently large to observe with current nanotechnology.
Resumo:
Mestrado em Engenharia Química
Resumo:
A calibração e o controlo da qualidade de um acelerador linear são passos muito importantes num serviço de Radioterapia, para garantir a qualidade dos tratamentos prestados. O sector da Física da Unidade de Radioterapia do Hospital Cuf Descobertas implementou um rigoroso Programa de controlo de qualidade ao equipamento produtor de radiação e aos equipamentos medidores de radiação, de acordo com o Dec-Lei 180/2002 e com os protocolos internacionais. Para tal, foram implementados procedimentos, criadas folhas de cálculo, instruções de trabalho e impressos. Foram ainda implementados testes aos equipamentos com periodicidade definida: controlo de qualidade diário e controlo de qualidade após intervenções (manutenções preventivas e correctivas). No decorrer do ano de 2005, o sector da Física colaborou activamente com toda a equipa da Radioterapia na implementação da Norma ISO 9001:2000 no serviço, contribuindo com o seu know how na implementação desta, numa área tão importante como a da garantia da qualidade dos feixes de radiação e das respectivas calibrações em dose. Numa procura de melhoria contínua da qualidade dos serviços prestados aos pacientes, decorre ainda uma auditoria externa da EQUAL-ESTRO*, intercomparação postal com dosímetros termoluminescentes. A qualidade dos feixes de energias utilizados diariamente é analisada, tanto ao nível das calibrações absolutas de cada um dos feixes de fotões e de electrões, como ao nível dos cálculos de dose obtidos com o sistema de planimetria XiO da CMS. Os resultados das duas primeiras fases da intercomparação, relativa aos dois feixes de fotões de 6 MV e 15 MV e feixes de electrões de 4 MeV, 8 MeV e 12 MeV, foram considerados pela EQUAL-ESTRO num nível óptimo (desvio máximo na dose medida em relação à dose de referência |d| ≤ 3%).
Resumo:
The electrooxidative behavior of citalopram (CTL) in aqueous media was studied by cyclic voltammetry (CV) and square-wave voltammetry (SWV) at a glassy-carbon electrode. The electrochemical behaviour of CTL involves two electrons and two protons in the irreversible and diffusion controlled oxidation of the tertiary amine group. The maximum analytical signal was obtained in a phosphate buffer (pH ¼ 8.2). For analytical purposes, an SWV method and a flow-injection analysis (FIA) system with amperometric detection were developed. The optimised SWV method showed a linear range between 1.10 10 5–1.20 10 4 molL 1, with a limit of detection (LOD) of 9.5 10 6 molL 1. Using the FIA method, a linear range between 2.00 10 6–9.00 10 5 molL 1 and an LODof 1.9 10 6 molL 1 were obtained. The validation of both methods revealed good performance characteristics confirming applicability for the quantification of CTL in several pharmaceutical products.
Resumo:
In life cycle impact assessment (LCIA) models, the sorption of the ionic fraction of dissociating organic chemicals is not adequately modeled because conventional non-polar partitioning models are applied. Therefore, high uncertainties are expected when modeling the mobility, as well as the bioavailability for uptake by exposed biota and degradation, of dissociating organic chemicals. Alternative regressions that account for the ionized fraction of a molecule to estimate fate parameters were applied to the USEtox model. The most sensitive model parameters in the estimation of ecotoxicological characterization factors (CFs) of micropollutants were evaluated by Monte Carlo analysis in both the default USEtox model and the alternative approach. Negligible differences of CFs values and 95% confidence limits between the two approaches were estimated for direct emissions to the freshwater compartment; however the default USEtox model overestimates CFs and the 95% confidence limits of basic compounds up to three orders and four orders of magnitude, respectively, relatively to the alternative approach for emissions to the agricultural soil compartment. For three emission scenarios, LCIA results show that the default USEtox model overestimates freshwater ecotoxicity impacts for the emission scenarios to agricultural soil by one order of magnitude, and larger confidence limits were estimated, relatively to the alternative approach.
Resumo:
This work presents the results of the experimental study of proton induced nuclear reactions in lithium, namely the 7Li(p,α) 4He, 6Li(p,α) 3He and 7Li(p,p)7Li reactions. The amount of 7Li and 6Li identified as primordial and observed in very old stars of the Milky Way galactic halo strongly deviates from the predictions of primordial nucleosynthesis and stellar evolution models which depend, among other factors, on the cross sections of reactions like 7Li(p,α) 4He and 6Li(p,α) 3He. These discrepancies have triggered a large amount of research in the fields of stellar evolution, cosmology, pre-galactic evolution and low energy nuclear reactions. Focusing on nuclear reactions, this work has measured the 7Li(p,α) 4He and 6Li(p,α) 3He reactions cross sections (expressed in terms of the astrophysical S -factor) with higher accuracy, and the electron screening effects in these reactions for different environments (insulators and metallic targets). The 7Li(p,α) 4He angular distributions were also measured. These measurementstook place in two laboratory facilities, in the framework of the LUNA (Laboratory for Undergroud Nuclear Astrophysics) international collaboration, namely the Laboratorio ´ de Feixe de Ioes ˜ in ITN (Instituto Tecnologico ´ e Nuclear) Sacavem, ´ Portugal, and the Dynamitron-TandemLaboratorium in Ruhr-Universitat¨ Bochum, Germany. The ITN target chamber was modified to measure these nuclear reactions, with the design and construction of new components, the addition of one turbomolecular pump and a cold finger. The 7Li(p,α) 4He and 6Li(p,α) 3He reactions were measured concurrently with seven and four targets, respectively. These targets were produced in order to obtain adequate and stable lithium depth profiles. In metallic environments, the measured electron screening potential energies are much higher than the predictions of atomic-physics models. The Debye screening model applied to the metallic conduction electrons is able to explain these high values. It is a simple model, but also very robust. Concerning primordial nucleosynthesis and stellar evolution models, these results are very important as they show that laboratory measurements are well controlled, and the model inputs from these cross sections are therefore correct. In this work the 7Li(p,p)7Li differential cross section was also measured, which is useful to describe the 7Li(p,α) 4He entrance channel.