797 resultados para Investments -- Decision making.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wildlife conservation in human-dominated landscapes requires that we understand how animals, when making habitat-use decisions, obtain diverse and dynamically occurring resources while avoiding risks, induced by both natural predators and anthropogenic threats. Little is known about the underlying processes that enable wild animals to persist in densely populated human-dominated landscapes, particularly in developing countries. In a complex, semi-arid, fragmented, human-dominated agricultural landscape, we analyzed the habitat-use of blackbuck, a large herbivore endemic to the Indian sub-continent. We hypothesized that blackbuck would show flexible habitat-use behaviour and be risk averse when resource quality in the landscape is high, and less sensitive to risk otherwise. Overall, blackbuck appeared to be strongly influenced by human activity and they offset risks by using small protected patches (similar to 3 km(2)) when they could afford to do so. Blackbuck habitat use varied dynamically corresponding with seasonally-changing levels of resources and risks, with protected habitats registering maximum use. The findings show that human activities can strongly influence and perhaps limit ungulate habitat-use and behaviour, but spatial heterogeneity in risk, particularly the presence of refuges, can allow ungulates to persist in landscapes with high human and livestock densities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many problems in control and signal processing can be formulated as sequential decision problems for general state space models. However, except for some simple models one cannot obtain analytical solutions and has to resort to approximation. In this thesis, we have investigated problems where Sequential Monte Carlo (SMC) methods can be combined with a gradient based search to provide solutions to online optimisation problems. We summarise the main contributions of the thesis as follows. Chapter 4 focuses on solving the sensor scheduling problem when cast as a controlled Hidden Markov Model. We consider the case in which the state, observation and action spaces are continuous. This general case is important as it is the natural framework for many applications. In sensor scheduling, our aim is to minimise the variance of the estimation error of the hidden state with respect to the action sequence. We present a novel SMC method that uses a stochastic gradient algorithm to find optimal actions. This is in contrast to existing works in the literature that only solve approximations to the original problem. In Chapter 5 we presented how an SMC can be used to solve a risk sensitive control problem. We adopt the use of the Feynman-Kac representation of a controlled Markov chain flow and exploit the properties of the logarithmic Lyapunov exponent, which lead to a policy gradient solution for the parameterised problem. The resulting SMC algorithm follows a similar structure with the Recursive Maximum Likelihood(RML) algorithm for online parameter estimation. In Chapters 6, 7 and 8, dynamic Graphical models were combined with with state space models for the purpose of online decentralised inference. We have concentrated more on the distributed parameter estimation problem using two Maximum Likelihood techniques, namely Recursive Maximum Likelihood (RML) and Expectation Maximization (EM). The resulting algorithms can be interpreted as an extension of the Belief Propagation (BP) algorithm to compute likelihood gradients. In order to design an SMC algorithm, in Chapter 8 uses a nonparametric approximations for Belief Propagation. The algorithms were successfully applied to solve the sensor localisation problem for sensor networks of small and medium size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This panel will discuss the research being conducted, and the models being used in three current coastal EPA studies being conducted on ecosystem services in Tampa Bay, the Chesapeake Bay and the Coastal Carolinas. These studies are intended to provide a broader and more comprehensive approach to policy and decision-making affecting coastal ecosystems as well as provide an account of valued services that have heretofore been largely unrecognized. Interim research products, including updated and integrated spatial data, models and model frameworks, and interactive decision support systems will be demonstrated to engage potential users and to elicit feedback. It is anticipated that the near-term impact of the projects will be to increase the awareness by coastal communities and coastal managers of the implications of their actions and to foster partnerships for ecosystem services research and applications. (PDF contains 4 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Population pressure in coastal New Hampshire challenges land use decision-making and threatens the ecological health and functioning of Great Bay, an estuary designated as both a NOAA National Estuarine Research Reserve and an EPA National Estuary Program site. Regional population in the seacoast has quadrupled in four decades resulting in sprawl, increased impervious surface cover and larger lot rural development (Zankel, et.al., 2006). All of Great Bay’s contributing watersheds face these challenges, resulting in calls for strategies addressing growth, development and land use planning. The communities within the Lamprey River watershed comprise this case study. Do these towns communicate upstream and downstream when making land use decisions? Are cumulative effects considered while debating development? Do town land use groups consider the Bay or the coasts in their decision-making? This presentation, a follow-up from the TCS 2008 conference and a completed dissertation, will discuss a novel social science approach to analyze and understand the social landscape of land use decision-making in the towns of the Lamprey River watershed. The methods include semi-structured interviews with GIS based maps in a grounded theory analytical strategy. The discussion will include key findings, opportunities and challenges in moving towards a watershed approach for land use planning. This presentation reviews the results of the case study and developed methodology, which can be used in watersheds elsewhere to map out the potential for moving towns towards EBM and watershed-scaled, land use planning. (PDF contains 4 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Humans are particularly adept at modifying their behavior in accordance with changing environmental demands. Through various mechanisms of cognitive control, individuals are able to tailor actions to fit complex short- and long-term goals. The research described in this thesis uses functional magnetic resonance imaging to characterize the neural correlates of cognitive control at two levels of complexity: response inhibition and self-control in intertemporal choice. First, we examined changes in neural response associated with increased experience and skill in response inhibition; successful response inhibition was associated with decreased neural response over time in the right ventrolateral prefrontal cortex, a region widely implicated in cognitive control, providing evidence for increased neural efficiency with learned automaticity. We also examined a more abstract form of cognitive control using intertemporal choice. In two experiments, we identified putative neural substrates for individual differences in temporal discounting, or the tendency to prefer immediate to delayed rewards. Using dynamic causal models, we characterized the neural circuit between ventromedial prefrontal cortex, an area involved in valuation, and dorsolateral prefrontal cortex, a region implicated in self-control in intertemporal and dietary choice, and found that connectivity from dorsolateral prefrontal cortex to ventromedial prefrontal cortex increases at the time of choice, particularly when delayed rewards are chosen. Moreover, estimates of the strength of connectivity predicted out-of-sample individual rates of temporal discounting, suggesting a neurocomputational mechanism for variation in the ability to delay gratification. Next, we interrogated the hypothesis that individual differences in temporal discounting are in part explained by the ability to imagine future reward outcomes. Using a novel paradigm, we imaged neural response during the imagining of primary rewards, and identified negative correlations between activity in regions associated the processing of both real and imagined rewards (lateral orbitofrontal cortex and ventromedial prefrontal cortex, respectively) and the individual temporal discounting parameters estimated in the previous experiment. These data suggest that individuals who are better able to represent reward outcomes neurally are less susceptible to temporal discounting. Together, these findings provide further insight into role of the prefrontal cortex in implementing cognitive control, and propose neurobiological substrates for individual variation.