917 resultados para Inverse Problem in Optics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calculating the potentials on the heart’s epicardial surface from the body surface potentials constitutes one form of inverse problems in electrocardiography (ECG). Since these problems are ill-posed, one approach is to use zero-order Tikhonov regularization, where the squared norms of both the residual and the solution are minimized, with a relative weight determined by the regularization parameter. In this paper, we used three different methods to choose the regularization parameter in the inverse solutions of ECG. The three methods include the L-curve, the generalized cross validation (GCV) and the discrepancy principle (DP). Among them, the GCV method has received less attention in solutions to ECG inverse problems than the other methods. Since the DP approach needs knowledge of norm of noises, we used a model function to estimate the noise. The performance of various methods was compared using a concentric sphere model and a real geometry heart-torso model with a distribution of current dipoles placed inside the heart model as the source. Gaussian measurement noises were added to the body surface potentials. The results show that the three methods all produce good inverse solutions with little noise; but, as the noise increases, the DP approach produces better results than the L-curve and GCV methods, particularly in the real geometry model. Both the GCV and L-curve methods perform well in low to medium noise situations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate an application of the method of fundamental solutions (MFS) to the one-dimensional parabolic inverse Cauchy–Stefan problem, where boundary data and the initial condition are to be determined from the Cauchy data prescribed on a given moving interface. In [B.T. Johansson, D. Lesnic, and T. Reeve, A method of fundamental solutions for the one-dimensional inverse Stefan Problem, Appl. Math Model. 35 (2011), pp. 4367–4378], the inverse Stefan problem was considered, where only the boundary data is to be reconstructed on the fixed boundary. We extend the MFS proposed in Johansson et al. (2011) and show that the initial condition can also be simultaneously recovered, i.e. the MFS is appropriate for the inverse Cauchy-Stefan problem. Theoretical properties of the method, as well as numerical investigations, are included, showing that accurate results can be efficiently obtained with small computational cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the Cauchy problem for the Laplace equation in a quadrant (quarter-plane) containing a bounded inclusion. Given the values of the solution and its derivative on the edges of the quadrant the solution is reconstructed on the boundary of the inclusion. This is achieved using an alternating iterative method where at each iteration step mixed boundary value problems are being solved. A numerical method is also proposed and investigated for the direct mixed problems reducing these to integral equations over the inclusion. Numerical examples verify the efficiency of the proposed scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We extend a meshless method of fundamental solutions recently proposed by the authors for the one-dimensional two-phase inverse linear Stefan problem, to the nonlinear case. In this latter situation the free surface is also considered unknown which is more realistic from the practical point of view. Building on the earlier work, the solution is approximated in each phase by a linear combination of fundamental solutions to the heat equation. The implementation and analysis are more complicated in the present situation since one needs to deal with a nonlinear minimization problem to identify the free surface. Furthermore, the inverse problem is ill-posed since small errors in the input measured data can cause large deviations in the desired solution. Therefore, regularization needs to be incorporated in the objective function which is minimized in order to obtain a stable solution. Numerical results are presented and discussed. © 2014 IMACS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical method based on integral equations is proposed and investigated for the Cauchy problem for the Laplace equation in 3-dimensional smooth bounded doubly connected domains. To numerically reconstruct a harmonic function from knowledge of the function and its normal derivative on the outer of two closed boundary surfaces, the harmonic function is represented as a single-layer potential. Matching this representation against the given data, a system of boundary integral equations is obtained to be solved for two unknown densities. This system is rewritten over the unit sphere under the assumption that each of the two boundary surfaces can be mapped smoothly and one-to-one to the unit sphere. For the discretization of this system, Weinert’s method (PhD, Göttingen, 1990) is employed, which generates a Galerkin type procedure for the numerical solution, and the densities in the system of integral equations are expressed in terms of spherical harmonics. Tikhonov regularization is incorporated, and numerical results are included showing the efficiency of the proposed procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scientific curiosity, exploration of georesources and environmental concerns are pushing the geoscientific research community toward subsurface investigations of ever-increasing complexity. This review explores various approaches to formulate and solve inverse problems in ways that effectively integrate geological concepts with geophysical and hydrogeological data. Modern geostatistical simulation algorithms can produce multiple subsurface realizations that are in agreement with conceptual geological models and statistical rock physics can be used to map these realizations into physical properties that are sensed by the geophysical or hydrogeological data. The inverse problem consists of finding one or an ensemble of such subsurface realizations that are in agreement with the data. The most general inversion frameworks are presently often computationally intractable when applied to large-scale problems and it is necessary to better understand the implications of simplifying (1) the conceptual geological model (e.g., using model compression); (2) the physical forward problem (e.g., using proxy models); and (3) the algorithm used to solve the inverse problem (e.g., Markov chain Monte Carlo or local optimization methods) to reach practical and robust solutions given today's computer resources and knowledge. We also highlight the need to not only use geophysical and hydrogeological data for parameter estimation purposes, but also to use them to falsify or corroborate alternative geological scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superconducting pairing of electrons in nanoscale metallic particles with discrete energy levels and a fixed number of electrons is described by the reduced Bardeen, Cooper, and Schrieffer model Hamiltonian. We show that this model is integrable by the algebraic Bethe ansatz. The eigenstates, spectrum, conserved operators, integrals of motion, and norms of wave functions are obtained. Furthermore, the quantum inverse problem is solved, meaning that form factors and correlation functions can be explicitly evaluated. Closed form expressions are given for the form factors and correlation functions that describe superconducting pairing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An integrable Kondo problem in the one-dimensional supersymmetric t-J model is studied by means of the boundary supersymmetric quantum inverse scattering method. The boundary K matrices depending on the local moments of the impurities are presented as a nontrivial realization of the graded reflection equation algebras in a two-dimensional impurity Hilbert space. Further, the model is solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained. (C) 1999 Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An integrable Kondo problem in the one-dimensional supersymmetric extended Hubbard model is studied by means of the boundary graded quantum inverse scattering method. The boundary K-matrices depending on the local moments of the impurities are presented as a non-trivial realization of the graded reflection equation algebras in a two-dimensional impurity Hilbert space. Further, the model is solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formaldehyde was the first air pollutant, which already in the 1970s emerged as a specifically non-industrial indoor air quality problem. Yet formaldehyde remained an indoor air quality issue and the formaldehyde level in residential indoor air is among the highest of any indoor air contaminant. Formaldehyde concentrations in 4 different indoor settings (schools, office buildings, new dwellings and occupied dwellings) in Portugal were measured using Photo Ionization Detection (PID) equipment (11,7 eV lamps). All the settings presented results higher than the reference value proposed by Portuguese legislation. Furthermore, occupied dwellings showed 3 units with results above the reference. We could conclude that formaldehyde presence is a reality in monitored indoor settings. Concentration levels are higher than the Portuguese reference value for indoor settings and these can indicate health problems for occupants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The monitoring data collected during tunnel excavation can be used in inverse analysis procedures in order to identify more realistic geomechanical parameters that can increase the knowledge about the interested formations. These more realistic parameters can be used in real time to adapt the project to the real structure in situ behaviour. However, monitoring plans are normally designed for safety assessment and not especially for the purpose of inverse analysis. In fact, there is a lack of knowledge about what types and quantity of measurements are needed to succeed in identifying the parameters of interest. Also, the optimisation algorithm chosen for the identification procedure may be important for this matter. In this work, this problem is addressed using a theoretical case with which a thorough parametric study was carried out using two optimisation algorithms based on different calculation paradigms, namely a conventional gradient-based algorithm and an evolution strategy algorithm. Calculations were carried for different sets of parameters to identify several combinations of types and amount of monitoring data. The results clearly show the high importance of the available monitoring data and the chosen algorithm for the success rate of the inverse analysis process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Planar polynomial vector fields which admit invariant algebraic curves, Darboux integrating factors or Darboux first integrals are of special interest. In the present paper we solve the inverse problem for invariant algebraic curves with a given multiplicity and for integrating factors, under generic assumptions regarding the (multiple) invariant algebraic curves involved. In particular we prove, in this generic scenario, that the existence of a Darboux integrating factor implies Darboux integrability. Furthermore we construct examples where the genericity assumption does not hold and indicate that the situation is different for these.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper shows how instructors can use the problem‐based learning method to introduce producer theory and market structure in intermediate microeconomics courses. The paper proposes a framework where different decision problems are presented to students, who are asked to imagine that they are the managers of a firm who need to solve a problem in a particular business setting. In this setting, the instructors’ role isto provide both guidance to facilitate student learning and content knowledge on a just‐in‐time basis

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Standard practice in Bayesian VARs is to formulate priors on the autoregressive parameters, but economists and policy makers actually have priors about the behavior of observable variables. We show how this kind of prior can be used in a VAR under strict probability theory principles. We state the inverse problem to be solved and we propose a numerical algorithm that works well in practical situations with a very large number of parameters. We prove various convergence theorems for the algorithm. As an application, we first show that the results in Christiano et al. (1999) are very sensitive to the introduction of various priors that are widely used. These priors turn out to be associated with undesirable priors on observables. But an empirical prior on observables helps clarify the relevance of these estimates: we find much higher persistence of output responses to monetary policy shocks than the one reported in Christiano et al. (1999) and a significantly larger total effect.