260 resultados para Introns
Resumo:
Cloning and sequencing of the upstream region of the gene of the CC chemokine HCC-1 led to the discovery of an adjacent gene coding for a CC chemokine that was named “HCC-2.” The two genes are separated by 12-kbp and reside in a head-to-tail orientation on chromosome 17. At variance with the genes for HCC-1 and other human CC chemokines, which have a three-exon-two-intron structure, the HCC-2 gene consists of four exons and three introns. Expression of HCC-2 and HCC-1 as studied by Northern analysis revealed, in addition to the regular, monocistronic mRNAs, a common, bicistronic transcript. In contrast to HCC-1, which is expressed constitutively in numerous human tissues, HCC-2 is expressed only in the gut and the liver. HCC-2 shares significant sequence homology with CKβ8 and the murine chemokines C10, CCF18/MRP-2, and macrophage inflammatory protein 1γ, which all contain six instead of four conserved cysteines. The two additional cysteines of HCC-2 form a third disulfide bond, which anchors the COOH-terminal domain to the core of the molecule. Highly purified recombinant HCC-2 was tested on neutrophils, eosinophils, monocytes, and lymphocytes and was found to exhibit marked functional similarities to macrophage inflammatory protein 1α. It is a potent chemoattractant and inducer of enzyme release in monocytes and a moderately active attractant for eosinophils. Desensitization studies indicate that HCC-2 acts mainly via CC chemokine receptor CCR1.
Resumo:
5′-End fragments of two genes encoding plastid-localized acetyl-CoA carboxylase (ACCase; EC 6.4.1.2) of wheat (Triticum aestivum) were cloned and sequenced. The sequences of the two genes, Acc-1,1 and Acc-1,2, are 89% identical. Their exon sequences are 98% identical. The amino acid sequence of the biotin carboxylase domain encoded by Acc-1,1 and Acc-1,2 is 93% identical with the maize plastid ACCase but only 80–84% identical with the cytosolic ACCases from other plants and from wheat. Four overlapping fragments of cDNA covering the entire coding region were cloned by PCR and sequenced. The wheat plastid ACCase ORF contains 2,311 amino acids with a predicted molecular mass of 255 kDa. A putative transit peptide is present at the N terminus. Comparison of the genomic and cDNA sequences revealed introns at conserved sites found in the genes of other plant multifunctional ACCases, including two introns absent from the wheat cytosolic ACCase genes. Transcription start sites of the plastid ACCase genes were estimated from the longest cDNA clones obtained by 5′-RACE (rapid amplification of cDNA ends). The untranslated leader sequence encoded by the Acc-1 genes is at least 130–170 nucleotides long and is interrupted by an intron. Southern analysis indicates the presence of only one copy of the gene in each ancestral chromosome set. The gene maps near the telomere on the short arm of chromosomes 2A, 2B, and 2D. Identification of three different cDNAs, two corresponding to genes Acc-1,1 and Acc-1,2, indicates that all three genes are transcriptionally active.
Resumo:
Sequence analysis of chloroplast and mitochondrial large subunit rRNA genes from over 75 green algae disclosed 28 new group I intron-encoded proteins carrying a single LAGLIDADG motif. These putative homing endonucleases form four subfamilies of homologous enzymes, with the members of each subfamily being encoded by introns sharing the same insertion site. We showed that four divergent endonucleases from the I-CreI subfamily cleave the same DNA substrates. Mapping of the 66 amino acids that are conserved among the members of this subfamily on the 3-dimensional structure of I-CreI bound to its recognition sequence revealed that these residues participate in protein folding, homodimerization, DNA recognition and catalysis. Surprisingly, only seven of the 21 I-CreI amino acids interacting with DNA are conserved, suggesting that I-CreI and its homologs use different subsets of residues to recognize the same DNA sequence. Our sequence comparison of all 45 single-LAGLIDADG proteins identified so far suggests that these proteins share related structures and that there is a weak pressure in each subfamily to maintain identical protein–DNA contacts. The high sequence variability we observed in the DNA-binding site of homologous LAGLIDADG endonucleases provides insight into how these proteins evolve new DNA specificity.
Resumo:
Taking advantage of the ongoing Dictyostelium genome sequencing project, we have assembled >73 kb of genomic DNA in 15 contigs harbouring 15 genes and one pseudogene of Rho-related proteins. Comparison with EST sequences revealed that every gene is interrupted by at least one and up to four introns. For racC extensive alternative splicing was identified. Northern blot analysis showed that mRNAs for racA, racE, racG, racH and racI were present at all stages of development, whereas racJ and racL were expressed only at late stages. Amino acid sequences have been analysed in the context of Rho-related proteins of other organisms. Rac1a/1b/1c, RacF1/F2 and to a lesser extent RacB and the GTPase domain of RacA can be grouped in the Rac subfamily. None of the additional Dictyostelium Rho-related proteins belongs to any of the well-defined subfamilies, like Rac, Cdc42 or Rho. RacD and RacA are unique in that they lack the prenylation motif characteristic of Rho proteins. RacD possesses a 50 residue C-terminal extension and RacA a 400 residue C-terminal extension that contains a proline-rich region, two BTB domains and a novel C-terminal domain. We have also identified homologues for RacA in Drosophila and mammals, thus defining a new subfamily of Rho proteins, RhoBTB.
Resumo:
Group II introns are widely believed to have been ancestors of spliceosomal introns, yet little is known about their own evolutionary history. In order to address the evolution of mobile group II introns, we have compiled 71 open reading frames (ORFs) related to group II intron reverse transcriptases and subjected their derived amino acid sequences to phylogenetic analysis. The phylogenetic tree was rooted with reverse transcriptases (RTs) of non-long terminal repeat retroelements, and the inferred phylogeny reveals two major clusters which we term the mitochondrial and chloroplast-like lineages. Bacterial ORFs are mainly positioned at the bases of the two lineages but with weak bootstrap support. The data give an overview of an apparently high degree of horizontal transfer of group II intron ORFs, mostly among related organisms but also between organelles and bacteria. The Zn domain (nuclease) and YADD motif (RT active site) were lost multiple times during evolution. Differences in domain structures suggest that the oldest ORFs were concise, while the ORF in the mitochondrial lineage subsequently expanded in three locations. The data are consistent with a bacterial origin for mobile group II introns.
Resumo:
Defects in the XPG DNA repair endonuclease gene can result in the cancer-prone disorders xeroderma pigmentosum (XP) or the XP–Cockayne syndrome complex. While the XPG cDNA sequence was known, determination of the genomic sequence was required to understand its different functions. In cells from normal donors, we found that the genomic sequence of the human XPG gene spans 30 kb, contains 15 exons that range from 61 to 1074 bp and 14 introns that range from 250 to 5763 bp. Analysis of the splice donor and acceptor sites using an information theory-based approach revealed three splice sites with low information content, which are components of the minor (U12) spliceosome. We identified six alternatively spliced XPG mRNA isoforms in cells from normal donors and from XPG patients: partial deletion of exon 8, partial retention of intron 8, two with alternative exons (in introns 1 and 6) and two that retained complete introns (introns 3 and 9). The amount of alternatively spliced XPG mRNA isoforms varied in different tissues. Most alternative splice donor and acceptor sites had a relatively high information content, but one has the U12 spliceosome sequence. A single nucleotide polymorphism has allele frequencies of 0.74 for 3507G and 0.26 for 3507C in 91 donors. The human XPG gene contains multiple splice sites with low information content in association with multiple alternatively spliced isoforms of XPG mRNA.
Resumo:
Of the rules used by the splicing machinery to precisely determine intron–exon boundaries only a fraction is known. Recent evidence suggests that specific short sequences within exons help in defining these boundaries. Such sequences are known as exonic splicing enhancers (ESE). A possible bioinformatical approach to studying ESE sequences is to compare genes that harbor introns with genes that do not. For this purpose two non-redundant samples of 719 intron-containing and 63 intron-lacking human genes were created. We performed a statistical analysis on these datasets of intron-containing and intron-lacking human coding sequences and found a statistically significant difference (P = 0.01) between these samples in terms of 5–6mer oligonucleotide distributions. The difference is not created by a few strong signals present in the majority of exons, but rather by the accumulation of multiple weak signals through small variations in codon frequencies, codon biases and context-dependent codon biases between the samples. A list of putative novel human splicing regulation sequences has been elucidated by our analysis.
Resumo:
We present here the description of genes coding for molluscan hemocyanins. Two distantly related mollusks, Haliotis tuberculata and Octopus dofleini, were studied. The typical architecture of a molluscan hemocyanin subunit, which is a string of seven or eight globular functional units (FUs, designated a to h, about 50 kDa each), is reflected by the gene organization: a series of eight structurally related coding regions in Haliotis, corresponding to FU-a to FU-h, with seven highly variable linker introns of 174 to 3,198 bp length (all in phase 1). In Octopus seven coding regions (FU-a to FU-g) are found, separated by phase 1 introns varying in length from 100 bp to 910 bp. Both genes exhibit typical signal (export) sequences, and in both cases these are interrupted by an additional intron. Each gene also contains an intron between signal peptide and FU-a and in the 3′ untranslated region. Of special relevance for evolutionary considerations are introns interrupting those regions that encode a discrete functional unit. We found that five of the eight FUs in Haliotis each are encoded by a single exon, whereas FU-f, FU-g, and FU-a are encoded by two, three and four exons, respectively. Similarly, in Octopus four of the FUs each correspond to an uninterrupted exon, whereas FU-b, FU-e, and FU-f each contain a single intron. Although the positioning of the introns between FUs is highly conserved in the two mollusks, the introns within FUs show no relationship either in location nor phase. It is proposed that the introns between FUs were generated as the eight-unit polypeptide evolved from a monomeric precursor, and that the internal introns have been added later. A hypothesis for evolution of the ring-like quaternary structure of molluscan hemocyanins is presented.
Resumo:
The flavoprotein (R)-(+)-mandelonitrile lyase (MDL; EC 4.1.2.10), which plays a key role in cyanogenesis in rosaceous stone fruits, occurs in black cherry (Prunus serotina Ehrh.) homogenates as several closely related isoforms. Biochemical and molecular biological methods were used to investigate MDL microheterogeneity and function in this species. Three novel MDL cDNAs of high sequence identity (designated MDL2, MDL4, and MDL5) were isolated. Like MDL1 and MDL3 cDNAs (Z. Hu, J.E. Poulton [1997] Plant Physiol 115: 1359–1369), they had open reading frames that predicted a flavin adenine dinucleotide-binding site, multiple N-glycosylation sites, and an N-terminal signal sequence. The N terminus of an MDL isoform purified from seedlings matched the derived amino acid sequence of the MDL4 cDNA. Genomic sequences corresponding to the MDL1, MDL2, and MDL4 cDNAs were obtained by polymerase chain reaction amplification of genomic DNA. Like the previously reported mdl3 gene, these genes are interrupted at identical positions by three short, conserved introns. Given their overall similarity, we conclude that the genes mdl1, mdl2, mdl3, mdl4, and mdl5 are derived from a common ancestral gene and constitute members of a gene family. Genomic Southern-blot analysis showed that this family has approximately eight members. Northern-blot analysis using gene-specific probes revealed differential expression of the genes mdl1, mdl2, mdl3, mdl4, and mdl5.
Resumo:
The single gene encoding limit dextrinase (pullulan 6-glucanohydrolase; EC 3.2.1.41) in barley (Hordeum vulgare) has 26 introns that range in size from 93 to 822 base pairs. The mature polypeptide encoded by the gene has 884 amino acid residues and a calculated molecular mass of 97,417 D. Limit dextrinase mRNA is abundant in gibberellic acid-treated aleurone layers and in germinated grain. Gibberellic acid response elements were found in the promoter region of the gene. These observations suggest that the enzyme participates in starch hydrolysis during endosperm mobilization in germinated grain. The mRNA encoding the enzyme is present at lower levels in the developing endosperm of immature grain, a location consistent with a role for limit dextrinase in starch synthesis. Enzyme activity was also detected in developing grain. The limit dextrinase has a presequence typical of transit peptides that target nascent polypeptides to amyloplasts, but this would not be expected to direct secretion of the mature enzyme from aleurone cells in germinated grain. It remains to be discovered how the enzyme is released from the aleurone and whether another enzyme, possibly of the isoamylase group, might be equally important for starch hydrolysis in germinated grain.
Resumo:
We discuss two tests of the hypothesis that the first genes were assembled from exons. The hypothesis of exon shuffling in the progenote predicts that intron phases will be correlated so that exons will be an integer number of codons and predicts that the exons will be correlated with compact regions of polypeptide chain. These predictions have been tested on ancient conserved proteins (proteins without introns in prokaryotes but with introns in eukaryotes) and hold with high statistical significance. We conclude that introns are correlated with compact features of proteins 15-, 22-, or 30-amino acid residues long, as was predicted by “The Exon Theory of Genes.”
Resumo:
A tremendous wealth of data is accumulating on the variety and distribution of transposable elements (TEs) in natural populations. There is little doubt that TEs provide new genetic variation on a scale, and with a degree of sophistication, previously unimagined. There are many examples of mutations and other types of genetic variation associated with the activity of mobile elements. Mutant phenotypes range from subtle changes in tissue specificity to dramatic alterations in the development and organization of tissues and organs. Such changes can occur because of insertions in coding regions, but the more sophisticated TE-mediated changes are more often the result of insertions into 5′ flanking regions and introns. Here, TE-induced variation is viewed from three evolutionary perspectives that are not mutually exclusive. First, variation resulting from the intrinsic parasitic nature of TE activity is examined. Second, we describe possible coadaptations between elements and their hosts that appear to have evolved because of selection to reduce the deleterious effects of new insertions on host fitness. Finally, some possible cases are explored in which the capacity of TEs to generate variation has been exploited by their hosts. The number of well documented cases in which element sequences appear to confer useful traits on the host, although small, is growing rapidly.
Resumo:
Salivary gland cells in the larvae of the dipteran Chironomus tentans offer unique possibilities to visualize the assembly and nucleocytoplasmic transport of a specific transcription product. Each nucleus harbors four giant polytene chromosomes, whose transcription sites are expanded, or puffed. On chromosome IV, there are two puffs of exceptional size, Balbiani ring (BR) 1 and BR 2. A BR gene is 35–40 kb, contains four short introns, and encodes a 1-MDa salivary polypeptide. The BR transcript is packed with proteins into a ribonucleoprotein (RNP) fibril that is folded into a compact ring-like structure. The completed RNP particle is released into the nucleoplasm and transported to the nuclear pore, where the RNP fibril is gradually unfolded and passes through the pore. On the cytoplasmic side, the exiting extended RNP fibril becomes engaged in protein synthesis and the ensuing polysome is anchored to the endoplasmic reticulum. Several of the BR particle proteins have been characterized, and their fate during the assembly and transport of the BR particle has been elucidated. The proteins studied are all added cotranscriptionally to the pre-mRNA molecule. The various proteins behave differently during RNA transport, and the flow pattern of each protein is related to the particular function of the protein. Because the cotranscriptional assembly of the pre-mRNP particle involves proteins functioning in the nucleus as well as proteins functioning in the cytoplasm, it is concluded that the fate of the mRNA molecule is determined to a considerable extent already at the gene level.
Resumo:
The gene encoding type II DNA topoisomerase from the kinetoplastid hemoflagellated protozoan parasite Leishmania donovani (LdTOP2) was isolated from a genomic DNA library of this parasite. DNA sequence analysis revealed an ORF of 3711 bp encoding a putative protein of 1236 amino acids with no introns. The deduced amino acid sequence of LdTOP2 showed strong homologies to TOP2 sequences from other kinetoplastids, namely Crithidia and Trypanosoma spp. with estimated identities of 86 and 68%, respectively. LdTOP2 shares a much lower identity of 32% with its human homologue. LdTOP2 is located as a single copy on a chromosome in the 0.7 Mb region in the L.donovani genome and is expressed as a 5 kb transcript. 5′-Mapping studies indicate that the LdTOP2 gene transcript is matured post-transcriptionally with the trans-splicing of the mini-exon occurring at –639 from the predicted initiation site. Antiserum raised in rabbit against glutathione S-transferase fusion protein containing the major catalytic portion of the recombinant L.donovani topoisomerase II protein could detect a band on western blots at ∼132 kDa, the expected size of the entire protein. Use of the same antiserum for immunolocalisation analysis led to the identification of nuclear, as well as kinetoplast, antigens for L.donovani topoisomerase II. The in vitro biochemical properties of the full-length recombinant LdTOP2 when overexpressed in E.coli were similar to the Mg(II) and ATP-dependent activity found in cell extracts of L.donovani.
Resumo:
The bronze (bz) locus exhibits the highest rate of recombination of any gene in higher plants. To investigate the possible basis of this high rate of recombination, we have analyzed the physical organization of the region around the bz locus. Two adjacent bacterial artificial chromosome clones, comprising a 240-kb contig centered around the Bz-McC allele, were isolated, and 60 kb of contiguous DNA spanning the two bacterial artificial chromosome clones was sequenced. We find that the bz locus lies in an unusually gene-rich region of the maize genome. Ten genes, at least eight of which are shown to be transcribed, are contained in a 32-kb stretch of DNA that is uninterrupted by retrotransposons. We have isolated nearly full length cDNAs corresponding to the five proximal genes in the cluster. The average intertranscript distance between them is just 1 kb, revealing a surprisingly compact packaging of adjacent genes in this part of the genome. At least 11 small insertions, including several previously described miniature inverted repeat transposable elements, were detected in the introns and 3′ untranslated regions of genes and between genes. The gene-rich region is flanked at the proximal and distal ends by retrotransposon blocks. Thus, the maize genome appears to have scattered regions of high gene density similar to those found in other plants. The unusually high rate of intragenic recombination seen in bz may be related to the very high gene density of the region.