936 resultados para Internal combustion engines, Spark ignition
Resumo:
Thesis (M. M. E.)--Cornell University, June, 1913.
Resumo:
2. unverändter Neudruck.
Resumo:
Includes index.
Resumo:
"August 1959."
Resumo:
"September 1963."
Resumo:
Includes index.
Resumo:
Includes index.
Resumo:
Includes index.
Resumo:
"The United States ... as part of the NATO/CCMS Air Pollution Pilot Study, introduced the Low Pollution Power Systems Development (LPPSD) program."
Resumo:
In most of the discussions about environmental issues and policies, transportation is highlighted as one of the main sources of pollutant emissions and energy consumption. The attention given to the automotive industry is understandable in this context due to its size, expansion, presence in our daily lives, and of course its environmental impact. If we scrutinize the “greenness” of car manufacturers we will find issues of concern from the raw material use, production processes, use, and end-of-life of vehicles. The main issues for production are high consumption of energy, raw materials, water and the waste stream, which contains the four substances of concern (cadmium, lead, hexavalent chromium, mercury). In respect of carbon emissions and energy use the use of cars is the main phase of its life-cycle due to the combination of internal combustion engines with fossil fuels. The most recent pressure is aimed at the end-of-life vehicles (ELV). In addition to the pollution from vehicle use, traffic jams and car accidents continue to be part of the downside of a car culture. Landfills sites are becoming scarce and the contamination of soil and aquifers completes the picture.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2015.
Resumo:
Na engenharia mecânica há cada vez mais necessidade de utilizar e de prever o comportamento das máquinas térmicas, mais propriamente dos motores de combustão interna, em especial na área da manutenção e da prevenção de falha num dos componentes vitais de um motor a 4 tempos: o veio de manivelas. Esta situação já tem sido bastante observada na indústria mecânica naval, nomeadamente na Marinha Portuguesa e, devido ao seu elevado grau de importância no desempenho de qualquer motor, decidiu-se focar o trabalho desta tese no estudo dos motores a diesel S.E.M.T Pielstick das unidades navais da Marinha Portuguesa, mais especificamente das corvetas da classe “João Coutinho” e da classe “ Baptista de Andrade”, devido ao historial de ocorrência de falhas no veio de manivelas nesta classe de navios e em outras da Marinha Portuguesa. Para efetuar este estudo, utilizaram-se todos os dados relativos ao historial de ocorrências de falhas destes motores, bem como todos os dados disponíveis do fabricante destes motores, por forma a reproduzir da forma mais fiável possível um modelo tridimensional do veio de manivelas no programa de modelação informática CAD Solidworks®, e possibilitar a análise cinemática do veio de manivelas. Desta forma, foi possível simular as condições de funcionamento do motor, assim como analisar e determinar a causa de falha do veio de manivelas, visando prolongar a vida útil dos veios de manivelas, contribuindo não só para menores custos de manutenção mas também para o aumento da operacionalidade destes navios.
Resumo:
Whilst the compression ignition (CI) engine exhibits many design advantages relative to its spark ignition engine counterpart; such as: high thermal efficiency, fuel economy and low carbon monoxide and hydrocarbon emissions, the issue of Diesel Particulate Matter (DPM) emissions continues to be an unresolved problem for the CI engine. Primarily, this thesis investigates a range of DPM mitigation strategies such as alternative fuels, injection technologies and combustion strategies conducted with a view to determine their impact on the physico-chemical properties of DPM emissions, and consequently to shed light on their likely human health impacts. Regulated gaseous emissions, Nitric oxide (NO), Carbon monoxide (CO), and Hydrocarbons (HCs), were measured in all experimental campaigns, although the major focus in this research program was on particulate emissions...
Resumo:
This report presents the development of a Stochastic Knock Detection (SKD) method for combustion knock detection in a spark-ignition engine using a model based design approach. Knock Signal Simulator (KSS) was developed as the plant model for the engine. The KSS as the plant model for the engine generates cycle-to-cycle accelerometer knock intensities following a stochastic approach with intensities that are generated using a Monte Carlo method from a lognormal distribution whose parameters have been predetermined from engine tests and dependent upon spark-timing, engine speed and load. The lognormal distribution has been shown to be a good approximation to the distribution of measured knock intensities over a range of engine conditions and spark-timings for multiple engines in previous studies. The SKD method is implemented in Knock Detection Module (KDM) which processes the knock intensities generated by KSS with a stochastic distribution estimation algorithm and outputs estimates of high and low knock intensity levels which characterize knock and reference level respectively. These estimates are then used to determine a knock factor which provides quantitative measure of knock level and can be used as a feedback signal to control engine knock. The knock factor is analyzed and compared with a traditional knock detection method to detect engine knock under various engine operating conditions. To verify the effectiveness of the SKD method, a knock controller was also developed and tested in a model-in-loop (MIL) system. The objective of the knock controller is to allow the engine to operate as close as possible to its border-line spark-timing without significant engine knock. The controller parameters were tuned to minimize the cycle-to-cycle variation in spark timing and the settling time of the controller in responding to step increase in spark advance resulting in the onset of engine knock. The simulation results showed that the combined system can be used adequately to model engine knock and evaluated knock control strategies for a wide range of engine operating conditions.
Resumo:
This work assesses the performance of small biogas-fuelled engines and explores high-efficiency strategies for power generation in the very low power range of less than 1000 W. Experiments were performed on a small 95-cc, single-cylinder, four-stroke spark-ignition engine operating on biogas. The engine was operated in two modes, i.e., `premixed' and `fuel injection' modes, using both single and dual spark plug configurations. Measurements of in-cylinder pressure, crank angle, brake power, air and fuel flow rates, and exhaust emissions were conducted. Cycle-to-cycle variations in engine in-cylinder pressure and power were also studied and assessed quantitatively for various loading conditions. Results suggest that biogas combustion can be fairly sensitive to the ignition strategies thereby affecting the power output and efficiency. Further, results indicate that continuous fuel injection shows superior performance compared to the premixed case especially at low loads owing to possible charge stratification in the engine cylinder. Overall, this study has demonstrated for the first time that a combination of technologies such as lean burn, fuel injection, and dual spark plug ignition can provide highly efficient and stable operation in a biogas-fuelled small S.I. engine, especially in the low power range of 450-1000W. (C) 2014 Elsevier Inc. All rights reserved.