900 resultados para Interaction with Traffic


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the context of drug hypersensitivity, our group has recently proposed a new model based on the structural features of drugs (pharmacological interaction with immune receptors; p-i concept) to explain their recognition by T cells. According to this concept, even chemically inert drugs can stimulate T cells because certain drugs interact in a direct way with T-cell receptors (TCR) and possibly major histocompatibility complex molecules without the need for metabolism and covalent binding to a carrier. In this study, we investigated whether mouse T-cell hybridomas transfected with drug-specific human TCR can be used as an alternative to drug-specific T-cell clones (TCC). Indeed, they behaved like TCC and, in accordance with the p-i concept, the TCR recognize their specific drugs in a direct, processing-independent, and dose-dependent way. The presence of antigen-presenting cells was a prerequisite for interleukin-2 production by the TCR-transfected cells. The analysis of cross-reactivity confirmed the fine specificity of the TCR and also showed that TCR transfectants might provide a tool to evaluate the potential of new drugs to cause hypersensitivity due to cross-reactivity. Recombining the alpha- and beta-chains of sulfanilamide- and quinolone-specific TCR abrogated drug reactivity, suggesting that both original alpha- and beta-chains were involved in drug binding. The TCR-transfected hybridoma system showed that the recognition of two important classes of drugs (sulfanilamides and quinolones) by TCR occurred according to the p-i concept and provides an interesting tool to study drug-TCR interactions and their biological consequences and to evaluate the cross-reactivity potential of new drugs of the same class.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transendothelial migration is a crucial step in the complex process of lymphocyte extravasation during lymphocyte homing, immunosurveillance and inflammation. However, little is known about the precise role of cell adhesion molecules (CAM) involved in this particular event. To define the CAM involved in T cell adhesion versus transendothelial migration, we have previously established an in vitro transendothelial migration system using mouse T cells and mouse endothelioma cells. We demonstrate here that, using ICAM-1-deficient endothelioma cells derived from ICAM-1 mutant mice, transendothelial migration of T cells was inhibited to a much greater extent when compared to migration across wild-type cells treated with a blocking anti-ICAM-1 monoclonal antibody. This unexpected result was confirmed by a rescue experiment using retroviral transfer of wild-type ICAM-1 into ICAM-1-deficient endothelial cells. Additional experiments showed that, in the absence of functional ICAM-1, only ICAM-2 was involved in transendothelial migration, but not PECAM-1, VCAM-1, or E-selectin. Taking this novel approach, we show that ICAM-1 and ICAM-2 are essential for transendothelial migration of T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wind power based generation has been rapidly growing world-wide during the recent past. In order to transmit large amounts of wind power over long distances, system planners may often add series compensation to existing transmission lines owing to several benefits such as improved steady-state power transfer limit, improved transient stability, and efficient utilization of transmission infrastructure. Application of series capacitors has posed resonant interaction concerns such as through subsynchronous resonance (SSR) with conventional turbine-generators. Wind turbine-generators may also be susceptible to such resonant interactions. However, not much information is available in literature and even engineering standards are yet to address these issues. The motivation problem for this research is based on an actual system switching event that resulted in undamped oscillations in a 345-kV series-compensated, typical ring-bus power system configuration. Based on time-domain ATP (Alternative Transients Program) modeling, simulations and analysis of system event records, the occurrence of subsynchronous interactions within the existing 345-kV series-compensated power system has been investigated. Effects of various small-signal and large-signal power system disturbances with both identical and non-identical wind turbine parameters (such as with a statistical-spread) has been evaluated. Effect of parameter variations on subsynchronous oscillations has been quantified using 3D-DFT plots and the oscillations have been identified as due to electrical self-excitation effects, rather than torsional interaction. Further, the generator no-load reactance and the rotor-side converter inner-loop controller gains have been identified as bearing maximum sensitivity to either damping or exacerbating the self-excited oscillations. A higher-order spectral analysis method based on modified Prony estimation has been successfully applied to the field records identifying dominant 9.79 Hz subsynchronous oscillations. Recommendations have been made for exploring countermeasures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel class of phospholipase-resisting phosphatidylcholine analogs, in which the C-2 ester group or both C-1 and C-2 ester groups have been replaced by carbamyloxy functions (-NH-C-O-), have been synthesized. These lipids were not degraded by phospholipase A2 while complete hydrolysis occurred with phospholipase C. Ultrasonic irradiation of the aqueous dispersions of the phospholipids in the presence as well as in the absence of cholesterol resulted in the formation of closed bilayer structures as evidenced by negative staining electron microscopy and also by their ability to entrap [14C]glucose. The leakage rates of glucose at 37°C from liposomes of these compounds have also been measured. Liposomes consisting of 1,2-dipentadecanylcarbamyloxy-sn-glycero- 3-phosphorylcholine were found to be more leaky (2.1 %/h) as compared to the liposomes of 1-palmitoyl-2-pentadecanylcarbamyloxy-sn -glycero-3-phosphoryl- choline (O.5%/h). Moreover, inclusion of cholesterol (33 mol%) into the bilayers of the former phospholipid had no effect on the leakage rate (2.4%/h) while it effectively reduced permeability of the latter (O.22%/h). These phosphatidylcholines are useful for studying the possible role of phospholipases in the capture and lysis of liposomes in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plectin is a versatile cytolinker of the plakin family conferring cell resilience to mechanical stress in stratified epithelia and muscles. It acts as a critical organizer of the cytoskeletal system by tethering various intermediate filament (IF) networks through its C-terminal IF-binding domain (IFBD). Mutations affecting the IFBD cause devastating human diseases. Here, we show that serine 4642, which is located in the extreme C-terminus of plectin, is phosphorylated in different cell lines. Phosphorylation of S4642 decreased the ability of plectin IFBD to associate with various IFs, as assessed by immunofluorescence microscopy and cell fractionation studies, as well as in yeast two-hybrid assays. Plectin phosphorylated at S4642 was reduced at sites of IF network anchorage along cell-substrate contacts in both skin and cultured keratinocytes. Treatment of SK-MEL-2 and HeLa cells with okadaic acid increased plectin S4642 phosphorylation, suggesting that protein phosphatase 2A dephosphorylates this residue. Moreover, plectin S4642 phosphorylation was enhanced after cell treatment with EGF, phorbol ester, sorbitol and 8-bromo-cyclic AMP, as well as during wound healing and protease-mediated cell detachment. Using selective protein kinase inhibitors, we identified two different kinases that modulate the phosphorylation of plectin S4642 in HeLa cells: MNK2, which is downstream of the ERK1/2-dependent MAPK cascade, and PKA. Our study indicates that phosphorylation of S4642 has an important regulatory role in the interaction of plectin with IFs and identifies a novel link between MNK2 and the cytoskeleton.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochrome P450c17 catalyzes steroidogenic 17alpha-hydroxylase and 17,20 lyase activities. Expression of the gene for P450c17 is cAMP dependent, tissue specific, developmentally programmed, and varies among species. Binding of Sp1, Sp3, and NF1-C (nuclear factor 1-C) to the first 227 bp of 5'flanking DNA (-227/LUC) is crucial for basal transcription in human NCI-H295A adrenal cells. Human placental JEG-3 cells contain Sp1, Sp3, and NF1, but do not express -227/LUC, even when transfected with a vector expressing steroidogenic factor 1 (SF-1). Therefore, other factors are essential for basal expression of P450c17. Deoxyribonuclease I footprinting and EMSAs identified a GATA consensus site at -64/-58 and an SF-1 site at -58/-50. RT-PCR identified GATA-4, GATA-6, and SF-1 in NCI-H295A cells and GATA-2 and GATA-3, but not GATA-4, GATA-6, or SF-1 in JEG-3 cells. Cotransfection of either GATA-4 or GATA-6 without SF-1 activated -227/LUC in JEG-3 cells, but cotransfection of GATA-2 or GATA-3 with or without SF-1 did not. Surprisingly, mutation of the GATA binding site in -227/LUC increased GATA-4 or GATA-6 induced activity, whereas mutation of the Sp1/Sp3 site decreased it. Furthermore, promoter constructs including the GATA site, but excluding the Sp1/Sp3 site at -196/-188, were not activated by GATA-4 or GATA-6, suggesting an interaction between Sp1/Sp3 and GATA-4 or GATA-6. Glutathione-S-transferase pull-down experiments and coimmunoprecipitation demonstrated interaction between GATA-4 or GATA-6 and Sp1, but not Sp3. Chromatin immunoprecipitation assays confirmed that this GATA-4/6 interaction with Sp1 occurred at the Sp site in the P450c17 promoter in NCI-H295A cells. Demethylation with 5-aza-2-deoxycytidine permitted JEG-3 cells to express endogenous P450c17, SF-1, GATA-4, GATA-6, and transfected -227/LUC. Thus, GATA-4 or GATA-6 and Sp1 together regulate expression of P450c17 in adrenal NCI-H295A cells and methylation of P450c17, GATA-4 and GATA-6 silence the expression of P450c17 in placental JEG-3 cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian adaptor protein Alix [ALG-2 (apoptosis-linked-gene-2 product)-interacting protein X] belongs to a conserved family of proteins that have in common an N-terminal Bro1 domain and a C-terminal PRD (proline-rich domain), both of which mediate partner protein interactions. Following our previous finding that Xp95, the Xenopus orthologue of Alix, undergoes a phosphorylation-dependent gel mobility shift during progesteroneinduced oocyte meiotic maturation, we explored potential regulation of Xp95/Alix by protein phosphorylation in hormone-induced cell cycle re-entry or M-phase induction. By MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analyses and gel mobility-shift assays, Xp95 is phosphorylated at multiple sites within the N-terminal half of the PRD during Xenopus oocyte maturation, and a similar region in Alix is phosphorylated in mitotically arrested but not serum-stimulated mammalian cells. By tandem MS, Thr745 within this region, which localizes in a conserved binding site to the adaptor protein SETA [SH3 (Src homology 3) domain-containing, expressed in tumorigenic astrocytes] CIN85 (a-cyano-4-hydroxycinnamate)/SH3KBP1 (SH3-domain kinase-binding protein 1), is one of the phosphorylation sites in Xp95. Results from GST (glutathione S-transferase)-pull down and peptide binding/competition assays further demonstrate that the Thr745 phosphorylation inhibits Xp95 interaction with the second SH3 domain of SETA. However, immunoprecipitates of Xp95 from extracts of M-phase-arrested mature oocytes contained additional partner proteins as compared with immunoprecipitates from extracts of G2-arrested immature oocytes. The deubiquitinase AMSH (associated molecule with the SH3 domain of signal transducing adaptor molecule) specifically interacts with phosphorylated Xp95 in M-phase cell lysates. These findings establish that Xp95/Alix is phosphorylated within the PRD during M-phase induction, and indicate that the phosphorylation may both positively and negatively modulate their interaction with partner proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voltage-dependent calcium channels (VDCCs) serve a wide range of physiological functions and their activity is modulated by different neurotransmitter systems. GABAergic inhibition of VDCCs in neurons has an important impact in controlling transmitter release, neuronal plasticity, gene expression and neuronal excitability. We investigated the molecular signalling mechanisms by which GABAB receptors inhibit calcium-mediated electrogenesis (Ca2+ spikes) in the distal apical dendrite of cortical layer 5 pyramidal neurons. Ca2+ spikes are the basis of coincidence detection and signal amplification of distal tuft synaptic inputs characteristic for the computational function of cortical pyramidal neurons. By combining dendritic whole-cell recordings with two-photon fluorescence Ca2+ imaging we found that all subtypes of VDCCs were present in the Ca2+ spike initiation zone, but that they contribute differently to the initiation and sustaining of dendritic Ca2+ spikes. Particularly, Cav1 VDCCs are the most abundant VDCC present in this dendritic compartment and they generated the sustained plateau potential characteristic for the Ca2+ spike. Activation of GABAB receptors specifically inhibited Cav1 channels. This inhibition of L-type Ca2+ currents was transiently relieved by strong depolarization but did not depend on protein kinase activity. Therefore, our findings suggest a novel membrane-delimited interaction of the Gi/o-βγ-subunit with Cav1 channels identifying this mechanism as the general pathway of GABAB receptor-mediated inhibition of VDCCs. Furthermore, the characterization of the contribution of the different VDCCs to the generation of the Ca2+ spike provides new insights into the molecular mechanism of dendritic computation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mammalian adaptor protein Alix [ALG-2 (apoptosis-linked-gene-2 product)-interacting protein X] belongs to a conserved family of proteins that have in common an N-terminal Bro1 domain and a C-terminal PRD (proline-rich domain), both of which mediate partner protein interactions. Following our previous finding that Xp95, the Xenopus orthologue of Alix, undergoes a phosphorylation-dependent gel mobility shift during progesteroneinduced oocyte meiotic maturation, we explored potential regulation of Xp95/Alix by protein phosphorylation in hormone-induced cell cycle re-entry or M-phase induction. By MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analyses and gel mobility-shift assays, Xp95 is phosphorylated at multiple sites within the N-terminal half of the PRD during Xenopus oocyte maturation, and a similar region in Alix is phosphorylated in mitotically arrested but not serum-stimulated mammalian cells. By tandem MS, Thr745 within this region, which localizes in a conserved binding site to the adaptor protein SETA [SH3 (Src homology 3) domain-containing, expressed in tumorigenic astrocytes] CIN85 (a-cyano-4-hydroxycinnamate)/SH3KBP1 (SH3-domain kinase-binding protein 1), is one of the phosphorylation sites in Xp95. Results from GST (glutathione S-transferase)-pull down and peptide binding/competition assays further demonstrate that the Thr745 phosphorylation inhibits Xp95 interaction with the second SH3 domain of SETA. However, immunoprecipitates of Xp95 from extracts of M-phase-arrested mature oocytes contained additional partner proteins as compared with immunoprecipitates from extracts of G2-arrested immature oocytes. The deubiquitinase AMSH (associated molecule with the SH3 domain of signal transducing adaptor molecule) specifically interacts with phosphorylated Xp95 in M-phase cell lysates. These findings establish that Xp95/Alix is phosphorylated within the PRD during M-phase induction, and indicate that the phosphorylation may both positively and negatively modulate their interaction with partner proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is widely accepted that the emergence of drug-resistant pathogens is the result of the overuse and misuse of antibiotics. Infectious Disease Society of America, Center for Disease Control and World Health Organization continue to view, with concern, the lack of antibiotics in development, especially those against Gram-negative bacteria. Antimicrobial peptides (AMPs) have been proposed as an alternative to antibiotics due to their selective activity against microbes and minor ability to induce resistance. For example, the Food and Drug Administration approved Daptomycin (DAP) in 2003 for treatment of severe skin infections caused by susceptible Gram-positive organisms. Currently, there are 12 to 15 examples of modified natural and synthetic AMPs in clinical development. But most of these agents are against Gram-positive bacteria. Therefore, there is unmet medical need for antimicrobials used to treat infections caused by Gram-negative bacteria. In this study, we show that a pro-apoptotic peptide predominantly used in cancer therapy, (KLAKLAK)2, is an effective antimicrobial against Gram-negative laboratory strains and clinical isolates. Despite the therapeutic promise, AMPs development is hindered by their susceptibility to proteolysis. Here, we demonstrate that an all-D enantiomer of (KLAKLAK)2, resistant to proteolysis, retains its activity against Gram-negative pathogens. In addition, we have elucidated the specific site and mechanism of action of D(KLAKLAK)2 through a repertoire of whole-cell and membrane-model assays. Although it is considered that development of resistance does not represent an obstacle for AMPs clinical development, strains with decreased susceptibility to these compounds have been reported. Staphylococci resistance to DAP was observed soon after its approval for use and has been linked to alterations of the cell wall (CW) and cellular membrane (CM) properties. Immediately following staphylococcal resistance, Enterococci resistance to DAP was seen, yet the mechanism of resistance in enterococci remains unknown. Our findings demonstrate that, similar to S. aureus, development of DAP-resistance in a vancomycin-resistant E. faecalis isolate is associated with alterations of the CW and properties of the CM. However, the genes linked to these changes in enterococci appear to be different from those described in S. aureus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. The aim of this study was to assess the independent risk of hepatitis C virus (HCV) infection in the development of hepatocellular carcinoma (HCC). The independent risk of hepatitis B virus (HBV), its interaction with hepatitis C virus and the association with other risk factors were examined.^ Methods. A hospital-based case-control study was conducted between January 1994 and December 1995. We enrolled 115 pathologically confirmed HCC patients and 230 nonliver cancer controls, who were matched by age ($\pm$5 years), gender, and year of diagnosis. Both cases and controls were recruited from The University of Texas M. D. Anderson Cancer Center at Houston. The risk factors were collected through personal interviews and blood samples were tested for HCV and HBV markers. Univariate and multivariate analyses were performed through conditional logistic regression.^ The prevalence of anti-HCV positive is 25.2% in HCC cases compared to 3.0% in controls. The univariate analysis showed that anti-HCV, HBsAg, alcohol drinking and cigarette smoking were significantly associated with HCC, however, family history of cancer, occupational chemical exposure, and use of oral contraceptive were not. Multivariate analysis revealed a matched odds ratio (OR) of 10.1 (95% CI 3.7-27.4) for anti-HCV, and an OR of 11.9 (95% CI 2.5-57.5) for HBsAg. However, dual infection of HCV and HBV had only a thirteen times increase in the risk of HCC, OR = 13.9 (95% CI 1.3-150.6). The estimated population attributable risk percent was 23.4% for HCV, 12.6% for HBV, and 5.3% for both viruses. Ever alcohol drinkers was positively associated with HCC, especially among daily drinkers, matched OR was 5.7 (95% CI 2.1-15.6). However, there was no significant increase in the risk of HCC among smokers as compared to nonsmokers. The mean age of HCC patients was significantly younger among the HBV(+) group and among the HCV(+)/HBV(+) group, when compared to the group of HCC patients with no viral markers. The association between past histories of blood transfusion, acupuncture, tattoo and IVDU was highly significant among the HCV(+) group and the HBV(+)/HCV(+) group, as compared to HCC patients with no viral markers. Forty percent of the HCC patients were pathologically or clinically diagnosed with liver cirrhosis. Anti-HCV(+) (OR = 3.6 95% CI 1.5-8.9) and alcohol drinking (OR = 2.7 95% CI 1.1-6.7), but not HBsAg, are the major risk factors for liver cirrhosis in HCC patients.^ Conclusion. Both hepatitis B virus and hepatitis C virus were independent risk factors for HCC. There was not enough evidence to determine the interaction between both viruses. Only daily alcoholic drinkers showed increasing risk for HCC development, as compared to nondrinkers. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytochromes P450 are a superfamily of heme-thiolate proteins that function in a concert with another protein, cytochrome P450 reductase, as terminal oxidases of an enzymatic system catalyzing the metabolism of a variety of foreign compounds and endogenous substrates. In order to better understand P450s catalytic mechanism and substrate specificity, information about the structure of the active site is necessary. Given the lack of a crystal structure of mammalian P450, other methods have been used to elucidate the substrate recognition and binding site structure in the active center. In this project I utilized the photoaffinity labeling technique and site-directed mutagenesis approach to gain further structural insight into the active site of mammalian cytochrome P4501AI and examine the role of surface residues in the interaction of P4501A1 with the reductase. ^ Four crosslinked peptides were identified by photoaffinity labeling using diazido benzphetamine as a substrate analog. Alignment of the primary structure of cytochrome P4501A1 with that of bacterial cytochrome P450102 (the crystal structure of which is known) revealed that two of the isolated crosslinked peptides can be placed in the vicinity of heme (in the L helix region and β10-β11 sheet region of cytochrome P450102) and could be involved in substrate binding. The other two peptides were located on the surface of the protein with the label bound specifically to Lys residues that were proposed to be involved in reductase-P450 interaction. ^ Alternatively, it has been shown that some of the organic hydroperoxides can support P450 catalyzed reactions in the absence of NADPH, O2 and reductase. By means of photoaffinity labeling the cumene hydroperoxide binding region was identified. Using azidocumene as the photoaffinity label, the tripeptide T501-L502-K503 was shown to be the site where azidocumene covalently binds to P4501A1. The sequence alignment of cytochrome P4501A1 with cytochrome P450102 predicts that this region might correspond to β-sheet structure localized on the distal side of the heme ring near the I helix and the oxygen binding pocket. The role of Thr501 in the cumene hydroperoxide binding was confirmed by mutations of this residue and kinetic analysis of the effects of the mutations. ^ In addition, the role of two lysine residues, Lys271 and Lys279, in the interaction with reductase was examined by means of site-directed mutagenesis. The lysine residues were substituted with isoleucine and enzymatic activity of the wild type and the mutants were compared in reductase- and cumene hydroperoxide-supported systems. The lysine 279 residue has been shown to play a critical role in the P4501A1-reductase interaction. ^