990 resultados para Inter-element spacing
Resumo:
This paper utilizes the Survey of Work History (1981) data to examine the importance of non-random sampling in the context of a model of interfirm labour mobility. The paper adopts Heckman's two-step procedure in order to estimate a three-equation model incorporating an individual's mobility status as endogenously determined. The main conclusion is that in estimating wage equations it is important to consider the role of job mobility and to correct for the effects of sample-selection bias. The results generally accord with those reported by Osberg et al. (1986) in the only previous Canadian study of job mobility in a sample-selection context.
Resumo:
Graphical tasks have become a prominent aspect of mathematics assessment. From a conceptual stance, the purpose of this study was to better understand the composition of graphical tasks commonly used to assess students’ mathematics understandings. Through an iterative design, the investigation described the sense making of 11–12-year-olds as they decoded mathematics tasks which contained a graphic. An ongoing analysis of two phases of data collection was undertaken as we analysed the extent to which various elements of text, graphics, and symbols influenced student sense making. Specifically, the study outlined the changed behaviour (and performance) of the participants as they solved graphical tasks that had been modified with respect to these elements. We propose a theoretical framework for understanding the composition of a graphical task and identify three specific elements which are dependently and independently related to each other, namely: the graphic; the text; and the symbols. Results indicated that although changes to the graphical tasks were minimal, a change in student success and understanding was most evident when the graphic element was modified. Implications include the need for test designers to carefully consider the graphics embedded within mathematics tasks since the elements within graphical tasks greatly influence student understanding.
Resumo:
Airports and cities inevitably recognise the value that each brings the other; however, the separation in decision-making authority for what to build, where, when and how provides a conundrum for both parties. Airports often want a say in what is developed outside of the airport fence, and cities often want a say in what is developed inside the airport fence. Defining how much of a say airports and cities have in decisions beyond their jurisdictional control is likely to be a topic that continues so long as airports and cities maintain separate formal decision-making processes for what to build, where, when and how. However, the recent Green and White Papers for a new National Aviation Policy have made early inroads to formalising relationships between Australia’s major airports and their host cities. At present, no clear indication (within practice or literature) is evident to the appropriateness of different governance arrangements for decisions to develop in situations that bring together the opposing strategic interests of airports and cities; thus leaving decisions for infrastructure development as complex decision-making spaces that hold airport and city/regional interests at stake. The line of enquiry is motivated by a lack of empirical research on networked decision-making domains outside of the realm of institutional theorists (Agranoff & McGuire, 2001; Provan, Fish & Sydow, 2007). That is, governance literature has remained focused towards abstract conceptualisations of organisation, without focusing on the minutia of how organisation influences action in real-world applications. A recent study by Black (2008) has provided an initial foothold for governance researchers into networked decision-making domains. This study builds upon Black’s (2008) work by aiming to explore and understand the problem space of making decisions subjected to complex jurisdictional and relational interdependencies. That is, the research examines the formal and informal structures, relationships, and forums that operationalise debates and interactions between decision-making actors as they vie for influence over deciding what to build, where, when and how in airport-proximal development projects. The research mobilises a mixture of qualitative and quantitative methods to examine three embedded cases of airport-proximal development from a network governance perspective. Findings from the research provide a new understanding to the ways in which informal actor networks underpin and combine with formal decision-making networks to create new (or realigned) governance spaces that facilitate decision-making during complex phases of development planning. The research is timely, and responds well to Isett, Mergel, LeRoux, Mischen and Rethemeyer’s (2011) recent critique of limitations within current network governance literature, specifically to their noted absence of empirical studies that acknowledge and interrogate the simultaneity of formal and informal network structures within network governance arrangements (Isett et al., 2011, pp. 162-166). The combination of social network analysis (SNA) techniques and thematic enquiry has enabled findings to document and interpret the ways in which decision-making actors organise to overcome complex problems for planning infrastructure. An innovative approach to using association networks has been used to provide insights to the importance of the different ways actors interact with one another, thus providing a simple yet valuable addition to the increasingly popular discipline of SNA. The research also identifies when and how different types of networks (i.e. formal and informal) are able to overcome currently known limitations to network governance (see McGuire & Agranoff, 2011), thus adding depth to the emerging body of network governance literature surrounding limitations to network ways of working (i.e. Rhodes, 1997a; Keast & Brown, 2002; Rethemeyer & Hatmaker, 2008; McGuire & Agranoff, 2011). Contributions are made to practice via the provision of a timely understanding of how horizontal fora between airports and their regions are used, particularly in the context of how they reframe the governance of decision-making for airport-proximal infrastructure development. This new understanding will enable government and industry actors to better understand the structural impacts of governance arrangements before they design or adopt them, particularly for factors such as efficiency of information, oversight, and responsiveness to change.
Resumo:
We compare the consistency of choices in two methods to used elicit risk preferences on an aggregate as well as on an individual level. We asked subjects to choose twice from a list of nine decision between two lotteries, as introduced by Holt and Laury (2002, 2005) alternating with nine decisions using the budget approach introduced by Andreoni and Harbaugh (2009). We find that while on an aggregate(subject pool) level the results are (roughly) consistent, on an individual(within-subject) level,behavior is far from consistent. Within each method as well as across methods we observe low correlations. This again questions the reliability of experimental risk elicitation measures and the ability to use results from such methods to control for the risk aversion of subjects when explaining e�ects in other experimental games.
Resumo:
This paper explores the impacts and extent of knowledge transfer (KT) in an undergraduate engineering transnational program with an Australian university partner at the University of Indonesia (UI) using an inter-university KT conceptual framework (Sutrisno, Lisana, & Pillay 2012). For the purpose of this paper, the opportunity for KT in curriculum design is examined. Given the explicit nature of curriculum knowledge, assessing each partner’s curriculum was pivotal in allowing UI to enrich its own curriculum. The KT mechanism of face-to-face contact between Indonesian and Australian academics led to not only transfer of knowledge related to the curriculum of the undergraduate program but also to other cooperation beyond the transnational program in the form of joint research and joint supervision of post-graduate theses. Positive inter-university dynamics, such as trust and willingness to work together between the partners were underpinned by the presence of key actors from both sides at the earlier stages of the partnership. Retrospectively exploring the KT process in the UI’s transnational programs with its Australian partner suggests that there have been both structured and unstructured mechanisms, highlighting the ubiquitous and unbounded nature of KT between universities. While initially successful in facilitating KT, due to rapid succession of persons in charge of the program and the increasing focus on revenue generation, the useful lessons and practices unfortunately are being lost. Although the intention to use the transnational program for KT was always implied, it gradually was overlooked by newer staff members. Based on UI’s experience as the first provider of transnational program in Indonesia and other similar cases in China, seemingly transnational programs driven by short-term immediate financial return are unsuccessful in facilitating KT due to sensitivities to unfavourable economic situation. Those that remain operational and contribute to knowledge exchange between the partners apparently have genuine long-term engagement objective.
Resumo:
The Clarence-Moreton Basin (CMB) covers approximately 26000 km2 and is the only sub-basin of the Great Artesian Basin (GAB) in which there is flow to both the south-west and the east, although flow to the south-west is predominant. In many parts of the basin, including catchments of the Bremer, Logan and upper Condamine Rivers in southeast Queensland, the Walloon Coal Measures are under exploration for Coal Seam Gas (CSG). In order to assess spatial variations in groundwater flow and hydrochemistry at a basin-wide scale, a 3D hydrogeological model of the Queensland section of the CMB has been developed using GoCAD modelling software. Prior to any large-scale CSG extraction, it is essential to understand the existing hydrochemical character of the different aquifers and to establish any potential linkage. To effectively use the large amount of water chemistry data existing for assessment of hydrochemical evolution within the different lithostratigraphic units, multivariate statistical techniques were employed.
Resumo:
Wheel–rail interaction is one of the most important research topics in railway engineering. It involves track impact response, track vibration and track safety. Track structure failures caused by wheel–rail impact forces can lead to significant economic loss for track owners through damage to rails and to the sleepers beneath. Wheel–rail impact forces occur because of imperfections in the wheels or rails such as wheel flats, irregular wheel profiles, rail corrugations and differences in the heights of rails connected at a welded joint. A wheel flat can cause a large dynamic impact force as well as a forced vibration with a high frequency, which can cause damage to the track structure. In the present work, a three-dimensional (3-D) finite element (FE) model for the impact analysis induced by the wheel flat is developed by use of the finite element analysis (FEA) software package ANSYS and validated by another validated simulation. The effect of wheel flats on impact forces is thoroughly investigated. It is found that the presence of a wheel flat will significantly increase the dynamic impact force on both rail and sleeper. The impact force will monotonically increase with the size of wheel flats. The relationships between the impact force and the wheel flat size are explored from this finite element analysis and they are important for track engineers to improve their understanding of the design and maintenance of the track system.
Resumo:
Wound research is a complex multidimensional activity most effectively conducted by inter-disciplinary teams that connect studies in basic wound biology, devices and biomaterials with clinical practice. These complexities have been recognised in a new initiative through the establishment of an inter-disciplinary wound research centre in Australia; the Wound Management Innovation Cooperative Research Centre (WMI CRC). The centre is funded by the Australian Government's Cooperative Research Centre Program and a consortium of 22 participants and has a resource of US$108 million over 8 years...
Resumo:
Preliminary data is presented on a detailed statistical analysis of k-factor determination for a single class of minerals (amphiboles) which contain a wide range of element concentrations. These amphiboles are homogeneous, contain few (if any) subsolidus microstructures and can be readily prepared for thin film analysis. In previous studies, element loss during the period of irradiation has been assumed negligible for the determination of k-factors. Since this phenomena may be significant for certain mineral systems, we also report on the effect of temperature on k-factor determination for various elements using small probe sizes (approx.20 nm).
Resumo:
The LiteSteel Beam (LSB) is a new hollow flange section developed in Australia with a unique geometry consisting of torsionally rigid rectangular hollow flanges and a relatively slender web. The LSB is subjected to a relatively new Lateral Distortional Buckling (LDB) mode when used as flexural members. Unlike the commonly observed lateral torsional buckling, lateral distortional buckling of LSBs is characterised by cross sectional change due to web distortion. Lateral distortional buckling causes significant moment capacity reduction for LSBs with intermediate spans. Therefore a detailed investigation was undertaken to determine the methods of reducing the effects of lateral distortional buckling in LSB flexural members. For this purpose the use of web stiffeners was investigated using finite element analyses of LSBs with different web stiffener spacing and sizes. It was found that the use of 5 mm steel plate stiffeners welded or screwed to the inner faces of the top and bottom flanges at third span points considerably reduced the lateral distortional buckling effects in LSBs. Suitable design rules were then developed to calculate the enhanced elastic lateral distortional buckling moments and the higher ultimate moment capacities of LSBs with the chosen web stiffener arrangement. This paper presents the details of this investigation and the results.
Resumo:
Shoulder joint is a complex integration of soft and hard tissues. It plays an important role in performing daily activities and can be considered as a perfect compromise between mobility and stability. However, shoulder is vulnerable to complications such as dislocations and osteoarthritis. Finite element (FE) models have been developed to understand shoulder injury mechanisms, implications of disease on shoulder complex and in assessing the quality of shoulder implants. Further, although few, Finite element shoulder models have also been utilized to answer important clinical questions such as the difference between a normal and osteoarthritic shoulder joint. However, due to the absence of experimental validation, it is questionable whether the constitutive models applied in these FE models are adequate to represent mechanical behaviors of shoulder elements (Cartilages, Ligaments, Muscles etc), therefore the confidence of using current models in answering clinically relevant question. The main objective of this review is to critically evaluate the existing FE shoulder models that have been used to investigate clinical problems. Due concern is given to check the adequacy of representative constitutive models of shoulder elements in drawing clinically relevant conclusion. Suggestions have been given to improve the existing shoulder models by inclusion of adequate constitutive models for shoulder elements to confidently answer clinically relevant questions.
Resumo:
In this paper, a hybrid smoothed finite element method (H-SFEM) is developed for solid mechanics problems by combining techniques of finite element method (FEM) and Node-based smoothed finite element method (NS-FEM) using a triangular mesh. A parameter is equipped into H-SFEM, and the strain field is further assumed to be the weighted average between compatible stains from FEM and smoothed strains from NS-FEM. We prove theoretically that the strain energy obtained from the H-SFEM solution lies in between those from the compatible FEM solution and the NS-FEM solution, which guarantees the convergence of H-SFEM. Intensive numerical studies are conducted to verify these theoretical results and show that (1) the upper and lower bound solutions can always be obtained by adjusting ; (2) there exists a preferable at which the H-SFEM can produce the ultrasonic accurate solution.
Resumo:
There are many continuum mechanical models have been developed such as liquid drop models, solid models, and so on for single living cell biomechanics studies. However, these models do not give a fully approach to exhibit a clear understanding of the behaviour of single living cells such as swelling behaviour, drag effect, etc. Hence, the porohyperelastic (PHE) model which can capture those aspects would be a good candidature to study cells behaviour (e.g. chondrocytes in this study). In this research, an FEM model of single chondrocyte cell will be developed by using this PHE model to simulate Atomic Force Microscopy (AFM) experimental results with the variation of strain rate. This material model will be compared with viscoelastic model to demonstrate the advantages of PHE model. The results have shown that the maximum value of force applied of PHE model is lower at lower strain rates. This is because the mobile fluid does not have enough time to exude in case of very high strain rate and also due to the lower permeability of the membrane than that of the protoplasm of chondrocyte. This behavior is barely observed in viscoelastic model. Thus, PHE model is the better model for cell biomechanics studies.
Resumo:
The effects of ethanol fumigation on the inter-cycle variability of key in-cylinder pressure parameters in a modern common rail diesel engine have been investigated. Specifically, maximum rate of pressure rise, peak pressure, peak pressure timing and ignition delay were investigated. A new methodology for investigating the start of combustion was also proposed and demonstrated—which is particularly useful with noisy in-cylinder pressure data as it can have a significant effect on the calculation of an accurate net rate of heat release indicator diagram. Inter-cycle variability has been traditionally investigated using the coefficient of variation. However, deeper insight into engine operation is given by presenting the results as kernel density estimates; hence, allowing investigation of otherwise unnoticed phenomena, including: multi-modal and skewed behaviour. This study has found that operation of a common rail diesel engine with high ethanol substitutions (>20% at full load, >30% at three quarter load) results in a significant reduction in ignition delay. Further, this study also concluded that if the engine is operated with absolute air to fuel ratios (mole basis) less than 80, the inter-cycle variability is substantially increased compared to normal operation.