1000 resultados para Integral geometry
Resumo:
We solve the two-dimensional, planar Navier-Stokes equations to simulate a laminar, standing hydraulic jump using a Volume-of-Fluid method. The geometry downstream of the jump has been designed to be similar to experimental conditions by including a pit at the edge of the platform over which liquid film flows. We obtain jumps with and without separation. Increasing the inlet Froude number pushes the jump downstream and makes the slope of the jump weaker, consistent with experimental observations of circular jumps, and decreasing the Reynolds number brings the jump upstream while making it steeper. We study the effect of the length of the domain and that of a downstream obstacle on the structure and location of the jump. The transient flow which leads to a final steady jump is described for the first time to our knowledge. In the moderate Reynolds number regime, we obtain steady undular jumps with a separated bubble underneath the first few undulations. Interestingly, surface tension leads to shortening of wavelength of these undulations. We show that the undulations can be explained using the inviscid theory of Benjamin and Lighthill (Proc. R. Soc. London, Ser. A, 1954). We hope this new finding will motivate experimental verification.
Resumo:
A modified approach to obtain approximate numerical solutions of Fredholin integral equations of the second kind is presented. The error bound is explained by the aid of several illustrative examples. In each example, the approximate solution is compared with the exact solution, wherever possible, and an excellent agreement is observed. In addition, the error bound in each example is compared with the one obtained by the Nystrom method. It is found that the error bound of the present method is smaller than the ones obtained by the Nystrom method. Further, the present method is successfully applied to derive the solution of an integral equation arising in a special Dirichlet problem. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Three-dimensional (3-D) full-wave electromagnetic simulation using method of moments (MoM) under the framework of fast solver algorithms like fast multipole method (FMM) is often bottlenecked by the speed of convergence of the Krylov-subspace-based iterative process. This is primarily because the electric field integral equation (EFIE) matrix, even with cutting-edge preconditioning techniques, often exhibits bad spectral properties arising from frequency or geometry-based ill-conditioning, which render iterative solvers slow to converge or stagnate occasionally. In this communication, a novel technique to expedite the convergence of MoMmatrix solution at a specific frequency is proposed, by extracting and applying Eigen-vectors from a previously solved neighboring frequency in an augmented generalized minimum residual (AGMRES) iterative framework. This technique can be applied in unison with any preconditioner. Numerical results demonstrate up to 40% speed-up in convergence using the proposed Eigen-AGMRES method.
Resumo:
In this article, we present a novel approach to throughput enhancement in miniaturized microfluidic microscopy systems. Using the presented approach, we demonstrate an inexpensive yet high-throughput analytical instrument. Using the high-throughput analytical instrument, we have been able to achieve about 125,880 cells per minute (more than one hundred and twenty five thousand cells per minute), even while employing cost-effective low frame rate cameras (120 fps). The throughput achieved here is a notable progression in the field of diagnostics as it enables rapid quantitative testing and analysis. We demonstrate the applicability of the instrument to point-of-care diagnostics, by performing blood cell counting. We report a comparative analysis between the counts (in cells per mu l) obtained from our instrument, with that of a commercially available hematology analyzer.
Resumo:
Collective cell migrations are essential in several physiological processes and are driven by both chemical and mechanical cues. The roles of substrate stiffness and confinement on collective migrations have been investigated in recent years, however few studies have addressed how geometric shapes influence collective cell migrations. Here, we address the hypothesis that the relative position of a cell within the confinement influences its motility. Monolayers of two types of epithelial cells-MCF7, a breast epithelial cancer cell line, and MDCK, a control epithelial cell line-were confined within circular, square, and cross-shaped stencils and their migration velocities were quantified upon release of the constraint using particle image velocimetry. The choice of stencil geometry allowed us to investigate individual cell motility within convex, straight and concave boundaries. Cells located in sharp, convex boundaries migrated at slower rates than those in concave or straight edges in both cell types. The overall cluster migration occurred in three phases: an initial linear increase with time, followed by a plateau region and a subsequent decrease in cluster speeds. An acto-myosin contractile ring, present in the MDCK but absent in MCF7 monolayer, was a prominent feature in the emergence of leader cells from the MDCK clusters which occurred every similar to 125 mu m from the vertex of the cross. Further, coordinated cell movements displayed vorticity patterns in MDCK which were absent in MCF7 clusters. We also used cytoskeletal inhibitors to show the importance of acto-myosin bounding cables in collective migrations through translation of local movements to create long range coordinated movements and the creation of leader cells within ensembles. To our knowledge, this is the first demonstration of how bounding shapes influence long-term migratory behaviours of epithelial cell monolayers. These results are important for tissue engineering and may also enhance our understanding of cell movements during developmental patterning and cancer metastasis.
Resumo:
Four types of the fundamental complex potential in antiplane elasticity are introduced: (a) a point dislocation, (b) a concentrated force, (c) a dislocation doublet and (d) a concentrated force doublet. It is proven that if the axis of the concentrated force doublet is perpendicular to the direction of the dislocation doublet, the relevant complex potentials are equivalent. Using the obtained complex potentials, a singular integral equation for the curve crack problem is introduced. Some particular features of the obtained singular integral equation are discussed, and numerical solutions and examples are given.
Resumo:
The boundary knot method (BKM) of very recent origin is an inherently meshless, integration-free, boundary-type, radial basis function collocation technique for the numerical discretization of general partial differential equation systems. Unlike the method of fundamental solutions, the use of non-singular general solution in the BKM avoids the unnecessary requirement of constructing a controversial artificial boundary outside the physical domain. The purpose of this paper is to extend the BKM to solve 2D Helmholtz and convection-diffusion problems under rather complicated irregular geometry. The method is also first applied to 3D problems. Numerical experiments validate that the BKM can produce highly accurate solutions using a relatively small number of knots. For inhomogeneous cases, some inner knots are found necessary to guarantee accuracy and stability. The stability and convergence of the BKM are numerically illustrated and the completeness issue is also discussed.
Resumo:
Finite element simulation of the Berkovich, Vickers, Knoop, and cone indenters was carried out for the indentation of elastic-plastic material. To fix the semiapex angle of the cone, several rules of equivalence were used and examined. Despite the asymmetry and differences in the stress and strain fields, it was established that for the Berkovich and Vickers indenters, the load-displacement relation can closely be simulated by a single cone indenter having a semiapex angle equal to 70.3degrees in accordance with the rule of the volume equivalence. On the other hand, none of the rules is applicable to the Knoop indenter owing to its great asymmetry. The finite element method developed here is also applicable to layered or gradient materials with slight modifications.
Resumo:
The mode I plane strain crack tip field with strain gradient effects is presented in this paper based on a simplified strain gradient theory within the framework proposed by Acharya and Bassani. The theory retains the essential structure of the incremental version of the conventional J_2 deformation theory No higher-order stress is introduced and no extra boundary value conditions beyond the conventional ones are required. The strain gradient effects are considered in the constitutive relation only through the instantaneous tangent modulus. The strain gradient measures are included into the tangent modulus as internal parameters. Therefore the boundary value problem is the same as that in the conventional theory Two typical crack Problems are studied: (a) the crack tip field under the small scale yielding condition induced by a linear elastic mode-I K-field and (b) the complete field for a compact tension specimen. The calculated results clearly show that the stress level near the crack tip with strain gradient effects is considerable higher than that in the classical theory The singularity of the strain field near the crack tip is nearly equal to the square-root singularity and the singularity of the stress field is slightly greater than it. Consequently, the J-integral is no longer path independent and increases monotonically as the radius of the calculated circular contour decreases.
Resumo:
The anisotropic nature of fibre reinforced composites leads to large stress concentrations around pin-loaded holes through standard weave cloths. Proper understanding of how this anisotropic nature affects the load distribution around holes can be utilised to reduce these con-centrations if sufficient thought is given to the internal fibre geometry near to the hole. Such local reinforcements need not be highly complex and can be readily produced without excessive effort, producing significant improvements in performance. © 1996 Kluwer Academic Publishers.
Resumo:
Resumen: El objetivo principal de este trabajo es analizar si la anticoncepción es un asunto perteneciente a la Medicina, como lo indica la práctica, o si merece una visión bajo una perspectiva más amplia. Se analizan publicaciones que estudian el problema de la efectividad de la anticoncepción considerando variables demográficas, económicas y sociales que gravitan a la hora de evaluar la eficacia en anticoncepción. Se incluye en el análisis aspectos espirituales y psicológicos, que generalmente son subestimados, pero que fueron considerados en el pensamiento filosófico y antropológico que desplegó K. Wojtyla, quien parte de la base de la unidad de la persona
Resumo:
El estudio se realizó en el Centro de Capacitación y Servicio Regional Pacífico (Jardín Botánico) ubicado en la ciudad de Masatepe, Masaya, en el periodo comprendido entre Marzo del 2001 a Febrero del 2002. El objetivo fue evaluar la utilidad del recuento integral de plagas en el fortalecimiento de la toma de decisiones de manejo de plagas y enfermedades, de acuerdo al comportamiento que estas presentan en cada lote. Para la realización del trabajo se tomaron 10 lotes ya establecidos y en plena producción con diferentes manejo, distancias de siembra, niveles de sombra y variedades distintas. La metodología contempló 5 puntos por lote y 1O plantas por punto; tomando a cada una, variables de: número de hojas totales, número de hojas enfermas, número de frutos totales, número de frutos dañados. Las plagas y enfermedades con menor porcentaje de incidencia en general fueron: Minador (Leucoptera co.ffel/a Guerin), Cochinilla (Planoccocus citri L) y Antracnosis (Collectotrichum sp). Las acciones de manejo se establecerían de acuerdo a los niveles presentados, para los cuales se tomo el criterio de 10% para enfermedades foliares; 5% para enfermedades que afectan hojas y frutos; y el 5% para la Broca. Las plagas y enfermedades que se presentaron durante el estudio fueron: Roya, Mancha de Hierro, Antracnosis, Broca, Minador. Considerando a la mancha de Hierro y Broca como las de mayor importancia. El lote Catuai Rojo presentó la mayor incidencia de enfermedades afectado por: Roya (Hemileia Vastatrix, Berk y Br.) y Mancha de hierro (Cercospora co.ffeico/a Berk y cook.), el manejo implementado fue preventivo (podas sanitarias, selectivas y de recepo ). El lote con mayor incidencia de plaga, fue Salchicha Vegetal (SV), la acción de manejo implementadas fueron: la utilización de trampas semioquímicas y endosulfan.
Resumo:
La mecanización agrícola, como parte integral del desarrollo agropecuario de un país, tiene como fin contribuir a superar el déficit de alimentación, siempre y cuando, planificadores y políticos entiendan la dimensión de ésta como instrumento de desarrollo. Dicha estrategia será positiva si se toma en cuenta elementos primarios de cada región, como son: población, conocimientos, tradiciones culturales, características climáticas, al igual que aspectos que apoyan al desarrollo de los citados elementos, como son: créditos, instalaciones, infraestructuras, etc. La propuesta de mecanización debe involucrar productores, empresarios, industriales, beneficiarios, el gobierno en su papel de rector de las políticas a establecer y las instituciones de investigación, asesoría y prueba, como garantices de definición de los sistemas de producción y tecnología a implementar. Investigación realizada a finales de 1997, con el propósito de conocer el estado de la mecanización en la zona del pacíficcrsur de Nicaragua, indica que el nivel mas común de mecanización utiliza fuente de energía mixta: tracción motriz y animales de tiro. Utilizando fincas de tres extensiones, en presencia de cuatro cultivos, se realizo un análisis de rentabilidad de los tres niveles más utilizados, a partir del cual se propone una estrategia de mecanización.