810 resultados para Insulin-resistance
Resumo:
To explain the predisposition for insulin resistance among African American (AA) adolescents, this study aimed to: 1) examine changes in intramyocellular lipid content (IMCL), and insulin sensitivity with intralipid (IL) infusion; and 2) determine whether the increase in IMCL is comparable between AA and Caucasian adolescents.
Resumo:
To assess how intrahepatic fat and insulin resistance relate to daily fructose and energy intake during short-term overfeeding in healthy subjects.
Resumo:
BACKGROUND: High fructose consumption is suspected to be causally linked to the epidemics of obesity and metabolic disorders. In rodents, fructose leads to insulin resistance and ectopic lipid deposition. In humans, the effects of fructose on insulin sensitivity remain debated, whereas its effect on ectopic lipids has never been investigated. OBJECTIVE: We assessed the effect of moderate fructose supplementation on insulin sensitivity (IS) and ectopic lipids in healthy male volunteers (n = 7). DESIGN: IS, intrahepatocellular lipids (IHCL), and intramyocellular lipids (IMCL) were measured before and after 1 and 4 wk of a high-fructose diet containing 1.5 g fructose . kg body wt(-1) . d(-1). Adipose tissue IS was evaluated from nonesterified fatty acid suppression, hepatic IS from suppression of hepatic glucose output (6,6-2H2-glucose), and muscle IS from the whole-body glucose disposal rate during a 2-step hyperinsulinemic euglycemic clamp. IHCL and IMCL were measured by 1H magnetic resonance spectroscopy. RESULTS: Fructose caused significant (P < 0.05) increases in fasting plasma concentrations of triacylglycerol (36%), VLDL-triacylglycerol (72%), lactate (49%), glucose (5.5%), and leptin (48%) without any significant changes in body weight, IHCL, IMCL, or IS. IHCL were negatively correlated with triacylglycerol after 4 wk of the high-fructose diet (r = -0.78, P < 0.05). CONCLUSION: Moderate fructose supplementation over 4 wk increases plasma triacylglycerol and glucose concentrations without causing ectopic lipid deposition or insulin resistance in healthy humans.
Resumo:
OBJECTIVE: To assess the effect of a possible interaction between dietary fat and physical inactivity on whole-body insulin sensitivity and intramyocellular lipids (IMCLs). RESEARCH DESIGN AND METHODS: Eight healthy male volunteers were studied on two occasions. After 2 days of an equilibrated diet and moderate physical activity, participants remained inactive (bed rest) for 60 h and consumed either a high-saturated fat (45% fat, of which approximately 60% was saturated fat [BR-HF]) or a high-carbohydrate (70% carbohydrate [BR-HCHO]) diet. To evaluate the effect of a high-fat diet alone, six of the eight volunteers were restudied after a 2-day equilibrated diet followed by 60 h on a high-saturated fat diet and controlled physical activity (PA-HF). Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp and IMCL concentrations by (1)H-magnetic resonance spectroscopy. RESULTS: Insulin-mediated glucose disposal was decreased by BR-HF condition (-24 +/- 6%, P < 0.05) but did not change with BR-HCHO (+19 +/- 10%, NS). BR-HF and BR-HCHO increased IMCL levels (+32 +/- 7%, P < 0.05 and +17 +/- 8%, P < 0.0011, respectively). Although the increase in IMCL levels with PA-HF (+31 +/- 19%, P = 0.12) was similar to that during BR-HF, insulin-mediated glucose disposal (-7 +/- 9%, NS) was not decreased. CONCLUSIONS: These data indicate that physical inactivity and a high-saturated fat diet may interact to reduce whole-body insulin sensitivity. IMCL content was influenced by dietary lipid and physical inactivity but was not directly associated with insulin resistance.
Resumo:
We recently demonstrated that in vivo insulin resistance is not retained in cultured skeletal muscle cells. In the present study, we tested the hypothesis that treating cultured skeletal muscle cells with fatty acids has an effect on insulin action which differs between insulin-sensitive and insulin-resistant subjects. Insulin effects were examined in myotubes from 8 normoglycemic non-obese insulin-resistant and 8 carefully matched insulin-sensitive subjects after preincubation with or without palmitate, linoleate, and 2-bromo-palmitate. Insulin-stimulated glycogen synthesis decreased by 27 +/- 5 % after palmitate treatment in myotubes from insulin-resistant, but not from insulin-sensitive subjects (1.50 +/- 0.08-fold over basal vs. 1.81 +/- 0.09-fold, p = 0.042). Despite this observation, we did not find any impairment in the PI 3-kinase/PKB/GSK-3 pathway. Furthermore, insulin action was not affected by linoleate and 2-bromo-palmitate. In conclusion, our data provide preliminary evidence that insulin resistance of skeletal muscle does not necessarily involve primary defects in insulin action, but could represent susceptibility to the desensitizing effect of fatty acids and possibly other environmental or adipose tissue-derived factors.
Resumo:
The aim of these studies was to investigate whether insulin resistance is primary to skeletal muscle. Myoblasts were isolated from muscle biopsies of 8 lean insulin-resistant and 8 carefully matched insulin-sensitive subjects (metabolic clearance rates as determined by euglycemic-hyperinsulinemic clamp: 5.8 +/- 0.5 vs. 12.3 +/- 1.7 ml x kg(-1) x min(-1), respectively; P < or = 0.05) and differentiated to myotubes. In these cells, insulin stimulation of glucose uptake, glycogen synthesis, insulin receptor (IR) kinase activity, and insulin receptor substrate 1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity were measured. Furthermore, insulin activation of protein kinase B (PKB) was compared with immunoblotting of serine residues at position 473. Basal glucose uptake (1.05 +/- 0.07 vs. 0.95 +/- 0.07 relative units, respectively; P = 0.49) and basal glycogen synthesis (1.02 +/- 0.11 vs. 0.98 +/- 0.11 relative units, respectively; P = 0.89) were not different in myotubes from insulin-resistant and insulin-sensitive subjects. Maximal insulin responsiveness of glucose uptake (1.35 +/- 0.03-fold vs. 1.41 +/- 0.05-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.43) and glycogen synthesis (2.00 +/- 0.13-fold vs. 2.10 +/- 0.16-fold over basal for insulin-resistant and insulin-sensitive subjects, respectively; P = 0.66) were also not different. Insulin stimulation (1 nmol/l) of IR kinase and PI 3-kinase were maximal within 5 min (approximately 8- and 5-fold over basal, respectively), and insulin activation of PKB was maximal within 15 min (approximately 3.5-fold over basal). These time kinetics were not significantly different between groups. In summary, our data show that insulin action and signaling in cultured skeletal muscle cells from normoglycemic lean insulin-resistant subjects is not different from that in cells from insulin-sensitive subjects. This suggests an important role of environmental factors in the development of insulin resistance in skeletal muscle.
Resumo:
AIMS/HYPOTHESIS: Inhibition of the signalling function of the human insulin receptor (HIR) is one of the principle mechanisms which induce cellular insulin resistance. It is speculated that serine residues in the insulin receptor beta-subunit are involved in receptor inhibition either as inhibitory phosphorylation sites or as part of receptor domains which bind inhibitory proteins or tyrosine phosphatases. As reported earlier we prepared 16 serine to alanine point mutations of the HIR and found that serine to alanine mutants HIR-994 and HIR-1023/25 showed increased tyrosine autophosphorylation when expressed in human embryonic kidney (HEK) 293 cells. In this study we examined whether these mutant receptors have a different susceptibility to inhibition by serine kinases or an altered tyrosine kinase activity. METHODS: Tyrosine kinase assay and transfection studies. RESULTS: In an in vitro kinase assay using IRS-1 as a substrate we could detect a higher intrinsic tyrosine kinase activity of both receptor constructs. Additionally, a higher capacity to phosphorylate the adapter protein Shc in intact cells was seen. To test the inhibition by serine kinases, the receptor constructs were expressed in HEK 293 cells together with IRS-1 and protein kinase C isoforms beta2 and theta. Phorbol ester stimulation of these cells reduced wild-type receptor autophosphorylation to 58 % or 55 % of the insulin simulated state, respectively. This inhibitory effect was not observed with HIR-994 and HIR-1023/25, although all other tested HIR mutants showed similar inhibition induced by protein kinase C. CONCLUSION/INTERPRETATION: The data suggest that the HIR-domain which contains the serine residues 994 and 1023/25 is important for the inhibitory effect of protein kinase C isoforms beta2 and theta on insulin receptor autophosphorylation.
Resumo:
Approximately 33% of clinical breast carcinomas require estrogens to proliferate. Epidemiological data show that insulin resistance and diabetes mellitus is 2–3 times more prevalent in women with breast cancer than those with benign breast lesions, suggesting a clinical link between insulin and estradiol. Insulin and estradiol have a synergistic effect on the growth of MCF7 breast cancer cells, and long-term estradiol treatment upregulates the expression of the key insulin signaling protein IRS-1. The goal of this study was to further define the mechanism(s) of cross-talk between insulin and estradiol in regulating the growth of breast cancer. Using MCF7 cells, acute treatment with insulin or estradiol alone was found to stimulate two activities associated with growth: Erk MAP kinase and PI 3-kinase. However, combined acute treatment had an antagonistic effect on both activities. Acute estradiol treatment inhibited the insulin-stimulated tyrosine phosphorylation of IRS-1 while increasing its serine phosphorylation; the serine phosphorylation was attenuated by the PI 3-kinase inhibitor wortmannin. The acute antagonism observed with combined estradiol and insulin are not consistent with the long-term synergistic effect on growth. In contrast, chronic estradiol treatment enhanced the insulin-sensitivity of breast cancer cells as measured by increases in total cellular insulin-stimulated tyrosine phosphorylation of IRS-1 and activation of PI 3-kinase. Estradiol stimulation of gene transcription was found to require PI 3-kinase activity but not MAP kinase activity. Insulin alone had no effect on ER transcriptional activity, but chronic treatment in combination with estradiol resulted in synergism of ER transcription. The synergistic effect of insulin and estradiol on MCF7 cell growth was also found to require PI 3-kinase but not MAP kinase activity. Therefore, chronic estradiol treatment increases insulin stimulation of PI 3-kinase, and PI 3-kinase is required for estradiol stimulation of gene transcription alone and in combined synergy with insulin. These data demonstrate that PI 3-kinase is the locus for the cross-talk between insulin and estradiol which results in enhanced breast cancer growth with long-term exposure to both hormones. This may have important clinical implications for women with high risk for breast cancer and/or diabetes mellitus. ^
Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action
Resumo:
The phosphorylation of insulin receptor substrate 1 (IRS-1) on tyrosine residues by the insulin receptor (IR) tyrosine kinase is involved in most of the biological responses of insulin. IRS-1 mediates insulin signaling by recruiting SH2 proteins through its multiple tyrosine phosphorylation sites. The phosphorylation of IRS-1 on serine/threonine residues also occurs in cells; however, the particular protein kinase(s) promoting this type of phosphorylation are unknown. Here we report that glycogen synthase kinase 3 (GSK-3) is capable of phosphorylating IRS-1 and that this modification converts IRS-1 into an inhibitor of IR tyrosine kinase activity in vitro. Expression of wild-type GSK-3 or an “unregulated” mutant of the kinase (S9A) in CHO cells overexpressing IRS-1 and IR, resulted in increased serine phosphorylation levels of IRS-1, suggesting that IRS-1 is a cellular target of GSK-3. Furthermore, insulin-induced tyrosine phosphorylation of IRS-1 and IR was markedly suppressed in cells expressing wild-type or the S9A mutant, indicating that expression of GSK-3 impairs IR tyrosine kinase activity. Taken together, our studies suggest a new role for GSK-3 in attenuating insulin signaling via its phosphorylation of IRS-1 and may provide new insight into mechanisms important in insulin resistance.
Resumo:
Apolipoprotein (apo) A-II is the second most abundant apolipoprotein in high density lipoprotein (HDL). To study its role in lipoprotein metabolism and atherosclerosis susceptibility, apo A-II knockout mice were created. Homozygous knockout mice had 67% and 52% reductions in HDL cholesterol levels in the fasted and fed states, respectively, and HDL particle size was reduced. Metabolic turnover studies revealed the HDL decrease to be due to both decreased HDL cholesterol ester and apo A-I transport rate and increased HDL cholesterol ester and apo A-I fractional catabolic rate. The apo A-II deficiency trait was bred onto the atherosclerosis-prone apo E-deficient background, which resulted in a surprising 66% decrease in cholesterol levels due primarily to decreased atherogenic lipoprotein remnant particles. Metabolic turnover studies indicated increased remnant clearance in the absence of apo A-II. Finally, apo A-II deficiency was associated with lower free fatty acid, glucose, and insulin levels, suggesting an insulin hypersensitivity state. In summary, apo A-II plays a complex role in lipoprotein metabolism, with some antiatherogenic properties such as the maintenance of a stable HDL pool, and other proatherogenic properties such as decreasing clearance of atherogenic lipoprotein remnants and promotion of insulin resistance.
Resumo:
The ATM gene is mutated in the syndrome of ataxia telangiectasia (AT), associated with neurologic dysfunction, growth abnormalities, and extreme radiosensitivity. Insulin-like growth factor-I receptor (IGF-IR) is a cell surface receptor with tyrosine kinase activity that can mediate mitogenesis, cell transformation, and inhibition of apoptosis. We report here that AT cells express low levels of IGF-IR and show decreased IGF-IR promoter activity compared with wild-type cells. Complementation of AT cells with the ATM cDNA results in increased IGF-IR promoter activity and elevated IGF-IR levels, whereas expression in wild-type cells of a dominant negative fragment of ATM specifically reduces IGF-IR expression, results consistent with a role for ATM in regulating IGF-IR expression at the level of transcription. When expression of IGF-IR cDNA is forced in AT cells via a heterologous viral promoter, near normal radioresistance is conferred on the cells. Conversely, in ATM cells complemented with the ATM cDNA, specific inhibition of the IGF-IR pathway prevents correction of the radiosensitivity. Taken together, these results establish a fundamental link between ATM function and IGF-IR expression and suggest that reduced expression of IGF-IR contributes to the radiosensitivity of AT cells. In addition, because IGF-I plays a major role in human growth and metabolism and serves as a survival and differentiation factor for developing neuronal tissue, these results may provide a basis for understanding other aspects of the AT syndrome, including the growth abnormalities, insulin resistance, and neurodegeneration.
Resumo:
Recent data indicate that sustained elevations in plasma insulin suppress the mRNA for IRS-2, a component of the insulin signaling pathway in liver, and that this deficiency contributes to hepatic insulin resistance and inappropriate gluconeogenesis. Here, we use nuclear run-on assays to show that insulin inhibits transcription of the IRS-2 gene in the livers of intact rats. Insulin also inhibited transcription of a reporter gene driven by the human IRS-2 promoter that was transfected into freshly isolated rat hepatocytes. The human promoter contains a heptanucleotide sequence, TGTTTTG, that is identical to the insulin response element (IRE) identified previously in the promoters of insulin-repressed genes. Single base pair substitutions in this IRE decreased transcription of the IRS-2-driven reporter in the absence of insulin and abolished insulin-mediated repression. We conclude that insulin represses transcription of the IRS-2 gene by blocking the action of a positive factor that binds to the IRE. Sustained repression of IRS-2, as occurs in chronic hyperinsulinemia, contributes to hepatic insulin resistance and accelerates the development of the diabetic state.
Resumo:
Perilipin coats the lipid droplets of adipocytes and is thought to have a role in regulating triacylglycerol hydrolysis. To study the role of perilipin in vivo, we have created a perilipin knockout mouse. Perilipin null (peri−/−) and wild-type (peri+/+) mice consume equal amounts of food, but the adipose tissue mass in the null animals is reduced to ≈30% of that in wild-type animals. Isolated adipocytes of perilipin null mice exhibit elevated basal lipolysis because of the loss of the protective function of perilipin. They also exhibit dramatically attenuated stimulated lipolytic activity, indicating that perilipin is required for maximal lipolytic activity. Plasma leptin concentrations in null animals were greater than expected for the reduced adipose mass. The peri−/− animals have a greater lean body mass and increased metabolic rate but they also show an increased tendency to develop glucose intolerance and peripheral insulin resistance. When fed a high-fat diet, the perilipin null animals are resistant to diet-induced obesity but not to glucose intolerance. The data reveal a major role for perilipin in adipose lipid metabolism and suggest perilipin as a potential target for attacking problems associated with obesity.
Resumo:
Insulin resistance is a feature of many common disorders including obesity and type 2 diabetes mellitus. In these disorders, the β-cells compensate for the insulin resistance for long periods of time with an increase in secretory capacity, an increase in β-cell mass, or both. To determine whether the β-cell response might relate to a circulating growth factor, we have transplanted normal islets under the kidney capsule of normoglycemic insulin-resistant mice with two different models of insulin resistance: lean mice that have a double heterozygous deletion of the insulin receptor and insulin receptor substrate-1 (DH) or the obese, hyperglycemic ob/ob mice. In the grafts transplanted into both hosts, there was a marked increase in β-cell mitotic activity and islet mass that was comparable with that observed in the endogenous pancreas. By contrast, islets of the DH mouse transplanted into normal mice showed reduced mitotic index. These data suggest the insulin resistance is associated with a circulating islet cell growth factor that is independent of glucose and obesity.
Resumo:
Angiotensin II (AII), acting via its G-protein linked receptor, is an important regulator of cardiac, vascular, and renal function. Following injection of AII into rats, we find that there is also a rapid tyrosine phosphorylation of the major insulin receptor substrates 1 and 2 (IRS-1 and IRS-2) in the heart. This phenomenon appears to involve JAK2 tyrosine kinase, which associates with the AT1 receptor and IRS-1/IRS-2 after AII stimulation. AII-induced phosphorylation leads to binding of phosphatidylinositol 3-kinase (PI 3-kinase) to IRS-1 and IRS-2; however, in contrast to other ligands, AII injection results in an acute inhibition of both basal and insulin-stimulated PI 3-kinase activity. The latter occurs without any reduction in insulin receptor or IRS phosphorylation or in the interaction of the p85 and p110 subunits of PI 3-kinase with each other or with IRS-1/IRS-2. These effects of AII are inhibited by AT1 receptor antagonists. Thus, there is direct cross-talk between insulin and AII signaling pathways at the level of both tyrosine phosphorylation and PI 3-kinase activation. These interactions may play an important role in the association of insulin resistance, hypertension, and cardiovascular disease.