312 resultados para Infarct


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diagnosis of vascular dementia (VaD) describes a group of various vessel disorders with different types of vascular lesions that finally contribute to the development of dementia. Most common forms of VaD in the elderly brain are subcortical vascular encephalopathy, strategic infarct dementia, and the multi infarct encephalopathy. Hereditary forms of VaD are rare. Most common is the cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Sporadic forms of VaD are caused by degenerative vessel disorders such as atherosclerosis, small vessel disease (SVD) including small vessel arteriosclerosis, arteriolosclerosis, and lipohyalinosis, and cerebral amyloid angiopathy (CAA). Less frequently inflammatory vessel disorders and tumor-associated vessel lesions (e. g. angiocentric T-cell or angiotropic large cell lymphoma) can cause symptoms of dementia. Here, we review and discuss the impact of vessel disorders to distinct vascular brain tissue lesions and to the development of dementia in elderly individuals. The impact of coexisting neurodegenerative pathology in the elderly brain to VaD as well as the correlation between SVD and CAA expansion in the brain parenchyma with that of Alzheimer's disease (AD)-related pathology is highlighted. We conclude that "pure" VaD is rare and most frequently caused by infarctions. However, there is a significant contribution of vascular lesions and vessel pathology to the development of dementia that may go beyond tissue damage due to vascular lesions. Insufficient blood blow and alterations of the perivascular drainage mechanisms of the brain may also lead to a reduced protein clearance from extracellular space and subsequent increase of proteins in the brain parenchyma, such as the amyloid beta-protein, and foster, thereby, the development of AD-related neurodegeneration. As such, it seems to be important for clinical practice to consider treatment of potentially coexisting AD pathology in cognitively impaired patients with vascular lesions. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To evaluate the neuroprotection of mild hypothermia, applied in different moments, in temporary focal cerebral ischemia in rats. Methods: Rats was divided into Control (C), Sham (S), Ischemic-control(IC), Pre-ischemic Hypothermia (IH1), Intra-ischemic Hypothermia (IH2), and Post-ischemic Hypothermia (IH3) groups. Morphometry was performed using the KS400 software (Carl Zeiss (R)) in coronal sections stained by Luxol Fast Blue. Ischemic areas and volumes were obtained. Results: Statistically, blue areas showed difference for C vs. IC, IC vs. IH1 and IC vs. IH2 (p=0.0001; p=0.01; p=0.03), and no difference between C vs. S, IC vs. IH3 and IH vs. IH2 (p=0.39; p=0.85; p=0.63). Red areas showed difference between C vs. IC, IC vs. IH1 and IC vs. IH2 (p=0.0001; p=0.009; p=0.03), and no difference between C vs. S, IC vs. IH3 and IH1 vs. IH2 (p=0.48; p=0.27; p=0.68). Average ischemic areas and ischemic volumes showed difference between IC vs. IH1 and IC vs. IH2 (p=0.0001 and p=0.0011), and no difference between IC vs. IH3 and IH1 vs. IH2 (p=0.57; p=0.79). Conclusion: Pre-ischemic and intra-ischemic hypothermia were shown to be similarly neuroprotective, but this was not true for post-ischemic hypothermia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NMDAR (N-methyl-D-aspartate receptor) is one subtype of ionotrophic glutamate receptor which is extensively distributed in the central nervous system (CNS). In the mammalian CNS, NMDAR serves prominent roles in the pathophysiologic process of cerebral ischemia. This study aimed to investigate the pattern of expression of protein and gene of the excitatory neurotransmitter NMDAR in experimental focal cerebral ischemia and the hole of neuroprotection with hypothermia and ketoprofen. 120 rats were randomly divided into 6 groups (20 animals each): control - no surgery; sham - simulation of surgery; ischemic - focal ischemia for 1 hour, without reperfusion; ischemic + intraischemic hypothermia; ischemic + previous intravenous ketoprofen, and ischemic + hypothermia and ketoprofen. Ten animals from each experimental group were used to establish the volume of infarct. Transient focal cerebral ischemia was obtained in rats by occlusion of the middle cerebral artery with an intraluminal suture. The infarct volume was measured using morphometric analysis of infarct areas defined by triphenyl tetrazolium chloride and the patterns of expression of the protein and gene NMDA were evaluated by immunohistochemistry and quantitative real-time PCR, respectively. Increases in the protein and gene NMDA receptor in the ischemics areas were observed and these increases were reduced by hypothermia and ketoprofen. The increase in the NMDA receptor protein and gene expression observed in the ischemic animals was reduced by neuroprotection (hypothermia and ketoprofen). The NMDA receptor increases in the ischemic area suggests that the NMDA mediated neuroexcitotoxicity plays an important role in cell death and that the neuroprotective effect of both, hypothermia and ketoprofen is directly involved with the NMDA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arterial hypertension is a major risk factor for ischemic stroke. However, the management of preexisting hypertension is still controversial in the treatment of acute stroke in hypertensive patients. The present study evaluates the influence of preserving hypertension during focal cerebral ischemia on stroke outcome in a rat model of chronic hypertension, the spontaneously hypertensive rats (SHR). Focal cerebral ischemia was induced by transient (1 h) occlusion of the middle cerebral artery, during which mean arterial blood pressure was maintained at normotension (110-120 mm Hg, group 1, n=6) or hypertension (160-170 mm Hg, group 2, n=6) using phenylephrine. T2-, diffusion- and perfusion-weighted MRI were performed serially at five different time points: before and during ischemia, and at 1, 4 and 7 days after ischemia. Lesion volume and brain edema were estimated from apparent diffusion coefficient maps and T2-weighted images. Regional cerebral blood flow (rCBF) was measured within and outside the perfusion deficient lesion and in the corresponding regions of the contralesional hemisphere. Neurological deficits were evaluated after reperfusion. Infarct volume, edema, and neurological deficits were significantly reduced in group 2 vs. group 1. In addition, higher values and rapid restoration of rCBF were observed in group 2, while rCBF in both hemispheres was significantly decreased in group 1. Maintaining preexisting hypertension alleviates ischemic brain injury in SHR by increasing collateral circulation to the ischemic region and allowing rapid restoration of rCBF. The data suggest that maintaining preexisting hypertension is a valuable approach to managing hypertensive patients suffering from acute ischemic stroke. Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We evaluated the functional dependence of stroke survivors from the Study of Stroke Mortality and Morbidity, using the Rankin Scale. Out of 355 ischemic stroke survivors (with a mean age of 67.9 years), 40% had some functional dependence at 28 days and 34.4% had some functional dependence at 6 months. Most predictors of physical dependence were identified at 28 days. These predictors were: low levels of education [illiterate vs. >= 8 years of education, multivariate odds ratio (OR) = 3.7; 95% confidence interval (95%CI): 1.60-8.54] and anatomical stroke location (total anterior circulation infarct, OR = 16.9; 95%CI: 2.93-97.49). Low levels of education and ischemic brain injury influenced functional dependence in these stroke survivors. Our findings reinforce the necessity of developing strategies for the rehabilitation of stroke patients, more especially in formulating specific strategies for care and treatment of stroke survivors with low socioeconomic status.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: The clinical significance of ischemia/reperfusion of the lower extremities demands further investigation to enable the development of more effective therapeutic alternatives. This study investigated the changes in the vascular reactivity of the rabbit femoral artery and nitric oxide metabolites under partial ischemia/reperfusion conditions following cilostazol administration. METHODS: Ischemia was induced using infrarenal aortic clamping. The animals were randomly divided into seven groups: Control 90 minutes, Ischemia/Reperfusion 90/60 minutes, Control 120 minutes, Ischemia/Reperfusion 120/90 minutes, Cilostazol, Cilostazol before Ischemia/Reperfusion 120/90 minutes, and Ischemia 120 minutes/Cilostazol/Reperfusion 90 minutes. Dose-response curves for sodium nitroprusside, acetylcholine, and the calcium ionophore A23187 were obtained in isolated femoral arteries. The levels of nitrites and nitrates in the plasma and skeletal muscle were determined using chemiluminescence. RESULTS: Acetylcholine- and A23187-induced relaxation was reduced in the Ischemia/Reperfusion 120/90 group, and treatment with cilostazol partially prevented this ischemia/reperfusion-induced endothelium impairment. Only cilostazol treatment increased plasma levels of nitrites and nitrates. An elevation in the levels of nitrites and nitrates was observed in muscle tissues in the Ischemia/Reperfusion 120/90, Cilostazol/Ischemia/Reperfusion, and Ischemia/Cilostazol/Reperfusion groups. CONCLUSION: Hind limb ischemia/reperfusion yielded an impaired endothelium-dependent relaxation of the femoral artery. Furthermore, cilostazol administration prior to ischemia exerted a protective effect on endothelium-dependent vascular reactivity under ischemia/reperfusion conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background: Left ventricular free wall rupture occurs in up to 10% of the in-hospital deaths following myocardial infarction. It is mainly associated with posterolateral myocardial infarction and its antemortem diagnosis is rarely made. Contrast echocardiography has been increasingly used for the evaluation of myocardial perfusion in patients with acute myocardial infarction, with important prognostic implications. In this case, we reported its use for the detection of a mechanical complication following myocardial infarction. Case presentation: A 50-year-old man with acute myocardial infarction in the lateral wall underwent myocardial contrast echocardiography for the evaluation of myocardial perfusion in the third day post-infarction. A perfusion defect was detected in lateral and inferior walls as well as the presence of contrast extrusion from the left ventricular cavity into the myocardium, forming a serpiginous duct extending from the endocardium to the epicardial region of the lateral wall, without communication with the pericardial space. Magnetic resonance imaging confirmed the diagnosis of impending rupture of the left ventricular free wall. While waiting for cardiac surgery, patient presented with cardiogenic shock and died. Anatomopathological findings were consistent with acute myocardial infarction in the lateral wall and a left ventricular free wall rupture at the infarct site. Conclusion: This case illustrates the early diagnosis of left ventricular free wall rupture by contrast echocardiography. Due to its ability to be performed at bedside this modality of imaging has the potential to identify this catastrophic condition in patients with acute myocardial infarction and help to treat these patients with emergent surgery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Ischemia and reperfusion (IR) injury remains a major cause of morbidity and mortality and multiple molecular and cellular pathways have been implicated in this injury. We determined whether acute inhibition of excessive mitochondrial fission at the onset of reperfusion improves mitochondrial dysfunction and cardiac contractility postmyocardial infarction in rats. METHODS AND RESULTS: We used a selective inhibitor of the fission machinery, P110, which we have recently designed. P110 treatment inhibited the interaction of fission proteins Fis1/Drp1, decreased mitochondrial fission, and improved bioenergetics in three different rat models of IR, including primary cardiomyocytes, ex vivo heart model, and an in vivo myocardial infarction model. Drp1 transiently bound to the mitochondria following IR injury and P110 treatment blocked this Drp1 mitochondrial association. Compared with control treatment, P110 (1 μmol/L) decreased infarct size by 28 ± 2% and increased adenosine triphosphate levels by 70+1% after IR relative to control IR in the ex vivo model. Intraperitoneal injection of P110 (0.5 mg/kg) at the onset of reperfusion in an in vivo model resulted in improved mitochondrial oxygen consumption by 68% when measured 3 weeks after ischemic injury, improved cardiac fractional shortening by 35%, reduced mitochondrial H2O2 uncoupling state by 70%, and improved overall mitochondrial functions. CONCLUSIONS: Together, we show that excessive mitochondrial fission at reperfusion contributes to long-term cardiac dysfunction in rats and that acute inhibition of excessive mitochondrial fission at the onset of reperfusion is sufficient to result in long-term benefits as evidenced by inhibiting cardiac dysfunction 3 weeks after acute myocardial infarction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Entscheidend für die Sauerstoffversorgung im ischämischen Gewebe ist die Bildung von Blutgefäßen. Dieser Vorgang findet im erwachsenen Organismus in Form von Arteriogenese, Angiogenese und Vaskulogenese statt. Die Entdeckung, dass endotheliale Progenitorzellen (EPC) aus dem Knochenmark mobilisiert werden können, um sich im Ischämiegebiet an der Bildung neuer Kapillaren zu beteiligen, eröffnet einen vollkommen neuen therapeutischen Ansatz. In der hier vorliegenden Arbeit konnte in drei unterschiedlichen Tiermodellen, dem Matrigelmodell, dem Hinterlaufischämiemodell und dem Infarktmodell der Nacktmaus gezeigt werden, dass eine Zelltherapie mit EPC die Neovaskularisation steigert und zu einer myokardialen Funktionsverbesserung beiträgt. Der entscheidende Beitrag der Arbeit liegt jedoch in der Erforschung des Zeitraums der Wirkung der Stammzelltherapie. In allen drei Tiermodellen konnte durch ein spezifisches Abtöten der mit der viralen Thymidinkinase (TK) transduzierten EPC der positive Effekt auf die Neovaskularisation gestoppt werden. Im Herzinfarktmodell der Nacktmaus kam es sogar zu einer signifikanten Verschlechterung der Herzfunktion sowie zu einer Vergrößerung des Infarktareals. Dieser Effekt war durch Apoptose der Zellen in der dritten und vierten Woche nach Infarkt und Zellinfusion zu beobachten. Somit besitzen EPC nicht nur eine Rolle in der initialen Freisetzung von Zytokinen, sondern tragen auch langfristig zur Aufrechterhaltung des zelltherapeutischen Effektes bei. Ob hierfür allein der Mechanismus der Differenzierung verantwortlich ist, bleibt in weiteren Untersuchungen abzuklären. Denkbar wäre auch eine Beeinflussung des Remodeling über parakrine Langzeiteffekte. Im zweiten Teil der Doktorarbeit wurde versucht, das eingeschränkte zelltherapeutische Potential von Progenitorzellen von Patienten mit „Koronarer Herzkrankheit“ (KHK) und ischämischer Kardiomyopathie mit Hilfe zweier eNOSTranskriptionsverstärker, „eNOS-enhancer“, zu verbessern. Im Matrigelmodell der Maus konnten wir eine Verbesserung des Neovaskularisationspotentials von Knochenmarkszellen (BMC) von Patienten nach Präinkubation mit dem eNOS-enhancer nachweisen. Auch im Myokardinfarktmodell der Maus konnten eine Verbesserung der Herzfunktion und eine Reduktion der Infarktgröße beobachtet werden. Beim direkten Vergleich der beiden eNOS-enhancer konnte kein Unterschied gefunden werden. Zusammenfassend leistet die hier vorliegende Arbeit einen wichtigen Beitrag zum Verständnis für die Bedeutung von Progenitorzellen im Rahmen der Stammzelltherapie nach Myokardinfarkt. Ferner wurde die Möglichkeit aufgezeigt, durch gezielte Beeinflussung der Progenitorzellen ihr therapeutisches Potential signifikant zu steigern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Con il termine IPC (precondizionamento ischemico) si indica un fenomeno per il quale, esponendo il cuore a brevi cicli di ischemie subletali prima di un danno ischemico prolungato, si conferisce una profonda resistenza all’infarto, una delle principali cause di invalidità e mortalità a livello mondiale. Studi recenti hanno suggerito che l’IPC sia in grado di migliorare la sopravvivenza, la mobilizzazione e l’integrazione di cellule staminali in aree ischemiche e che possa fornire una nuova strategia per potenziare l’efficacia della terapia cellulare cardiaca, un’area della ricerca in continuo sviluppo. L’IPC è difficilmente trasferibile nella pratica clinica ma, da anni, è ben documentato che gli oppioidi e i loro recettori hanno un ruolo cardioprotettivo e che attivano le vie di segnale coinvolte nell’IPC: sono quindi candidati ideali per una possibile terapia farmacologica alternativa all’IPC. Il trattamento di cardiomiociti con gli agonisti dei recettori oppioidi Dinorfina B, DADLE e Met-Encefalina potrebbe proteggere, quindi, le cellule dall’apoptosi causata da un ambiente ischemico ma potrebbe anche indurle a produrre fattori che richiamino elementi staminali. Per testare quest’ipotesi è stato messo a punto un modello di “microambiente ischemico” in vitro sui cardiomioblasti di ratto H9c2 ed è stato dimostrato che precondizionando le cellule in modo “continuativo” (ventiquattro ore di precondizionamento con oppioidi e successivamente ventiquattro ore di induzione del danno, continuando a somministrare i peptidi oppioidi) con Dinorfina B e DADLE si verifica una protezione diretta dall’apoptosi. Successivamente, saggi di migrazione e adesione hanno mostrato che DADLE agisce sulle H9c2 “ischemiche” spronandole a creare un microambiente capace di attirare cellule staminali mesenchimali umane (FMhMSC) e di potenziare le capacità adesive delle FMhMSC. I dati ottenuti suggeriscono, inoltre, che la capacità del microambiente ischemico trattato con DADLE di attirare le cellule staminali possa essere imputabile alla maggiore espressione di chemochine da parte delle H9c2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In ischemic stroke, the site of arterial obstruction has been shown to influence recanalization and clinical outcomes. However, this has not been studied in randomized controlled trials, nor has the impact of arterial obstruction site on reperfusion and infarct growth been assessed. We studied the influence of site and degree of arterial obstruction patients enrolled in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In patients with coronary artery disease, the size of myocardial infarction mainly determines the subsequent clinical outcome. Accordingly, it is the primary strategy to decrease cardiovascular mortality by minimizing infarct size. Promotion of collateral artery growth (arteriogenesis) is an appealing option of reducing infarct size. It has been demonstrated in experimental models that tangential fluid shear stress is the major trigger of arterial remodeling and, thus, of collateral growth. Lower-leg, high-pressure external counterpulsation triggered to occur during diastole induces a flow velocity signal and thus tangential endothelial shear stress in addition to the flow signal caused by cardiac stroke volume. We here present two cases of cardiac transplant recipients as human "models" of physical coronary arteriogenesis, providing an example of progressing and regressing clinical arteriogenesis, and review available evidence from clinical studies on other feasible forms of physical arteriogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET) was a prospective, randomized, double-blinded, placebo-controlled, phase II trial of alteplase between 3 and 6 hours after stroke onset. The primary outcome of infarct growth attenuation on MRI with alteplase in mismatch patients was negative when mismatch volumes were assessed volumetrically, without coregistration, which underestimates mismatch volumes. We hypothesized that assessing the extent of mismatch by coregistration of perfusion and diffusion MRI maps may more accurately allow the effects of alteplase vs placebo to be evaluated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endovascular treatments such as transluminal balloon angioplasty and intra-arterial nimodipine represent rescue therapy for cerebral vasospasm (CVS) after aneurysmal subarachnoid haemorrhage (SAH). Both indication and data regarding its efficacy in the prevention of cerebral infarct are, however, inconsistent. Therefore, an MR based perfusion weighted imaging/diffusion weighted imaging (PWI/DWI) mismatch was used to indicate this treatment and to characterise its effectiveness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND AIM: We have previously shown in a rat model of focal cerebral ischemia that sleep deprivation after stroke onset aggravates brain damage. Others reported that sleep deprivation prior to stroke is neuroprotective. The main aim of this study was to test the hypothesis that the neuroprotection may be related to an increase in sleep (sleep rebound) during the acute phase of stroke. METHODS: Male Sprague Dawley rats (n=36) were subjected to continuous polygraphic recordings for baseline, total sleep deprivation (TSD), and 24h after ischemia. TSD for 6h was performed by gentle handling and immediately followed by ischemia. Focal cerebral ischemia was induced by permanent occlusion of distal branches of the middle cerebral artery. Control experiments included ischemia without SD (nSD) and sham surgery with TSD (n=6/group). RESULTS: Shortly after stroke, the amount of slow wave sleep (SWS) and paradoxical sleep (PS) increased significantly (p<0.05) in the TSD/ischemia, resulting in an increase in the total sleep time by 30% compared to baseline, or by 20% compared with the nSD/ischemia group. The infarct volume decreased significantly by 50% in the TSD/ischemia compared to nSD group (p<0.02). Removal of sleep rebound by allowing TSD-rats sleep for 24h before ischemia eliminated the reduction in the infarct size. CONCLUSION PRESTROKE: Sleep deprivation results in sleep rebound and reduces brain damage. Sleep rebound may be causally related to the neuroprotection.