722 resultados para Inertia ellipsoid
Resumo:
The possibility that we will have to invest effort influences our future choice behavior. Indeed deciding whether an action is actually worth taking is a key element in the expression of human apathy or inertia. There is a well developed literature on brain activity related to the anticipation of effort, but how effort affects actual choice is less well understood. Furthermore, prior work is largely restricted to mental as opposed to physical effort or has confounded temporal with effortful costs. Here we investigated choice behavior and brain activity, using functional magnetic resonance imaging, in a study where healthy participants are required to make decisions between effortful gripping, where the factors of force (high and low) and reward (high and low) were varied, and a choice of merely holding a grip device for minimal monetary reward. Behaviorally, we show that force level influences the likelihood of choosing an effortful grip. We observed greater activity in the putamen when participants opt to grip an option with low effort compared with when they opt to grip an option with high effort. The results suggest that, over and above a nonspecific role in movement anticipation and salience, the putamen plays a crucial role in computations for choice that involves effort costs.
Resumo:
The magnitude and frequency of vertical fluctuations of the top of an axisymmetric miscible Boussinesq fountain forms the focus of this work. We present measurements of these quantities for saline-aqueous fountains in uniform quiescent surroundings. Our results span source Froude numbers 0.3 ≤ Fr 0 ≤ 40 and, thereby, encompass very weak, weak, intermediate and forced classes of fountain. We identify distinct scalings, based on known quantities at the fountain source, for the frequency of fountain height fluctuations which collapse our data within bands of Fr0. Notably, our scalings reveal that the (dimensionless) frequency takes a constant value within each band. These results highlight characteristic time scales for the fluctuations which we decompose into a single, physically apparent, length scale and velocity scale within each band. Moreover, within one particular band, spanning source Froude numbers towards the lower end of the full range considered, we identify unexpectedly long-period fluctuations indicating a near balance of inertia and (opposing) buoyancy at the source. Our analysis identifies four distinct classes of fluctuation behaviour (four bands of Fr 0) and this classification matches well with existing classifications of fountains based on rise heights. As such, we show that an analysis of the behaviour of the fountain top alone, rather than the entire fountain, provides an alternative approach to classifying fountains. The similarity of classifications based on the two different methods confirms that the boundaries between classes mark tangible changes in the physics of fountains. For high Fr0 we show that the dominant fluctuations occur at the scale of the largest eddies which can be contained within the fountain near its top. Extending this, we develop a Strouhal number, Strtop, based on experimental measures of the fountain top, defined such that Strtop = 1 would suggest the dominant fluctuations are caused by a continual cycle of eddies forming and collapsing at this largest physical scale. For high- Fr 0 fountains we find Strtop ≈ 0. 9. © 2013 Cambridge University Press.
Resumo:
The dynamical behaviour of the sidewall has an important influence on tyre vibration characteristics. Nonetheless, it remains crudely represented in many existing models. The current work considers a geometrically accurate, two-dimensional, sidewall description, with a view to identifying potential shortcomings in the approximate formulations and identifying the physical characteristics that must be accounted for. First, the mean stress state under pressurisation and centrifugal loading is investigated. Finite-Element calculations show that, while the loaded sidewall shape remains close to a toroid, its in-plane tensions differ appreciably from the associated analytical solution. This is largely due to the inability of the anisotropic sidewall material to sustain significant azimuthal stress. An approximate analysis, based on the meridional tension alone, is therefore developed, and shown to yield accurate predictions. In conjunction with a set of formulae for the 'engineering constants' of the sidewall material, the approximate solutions provide a straightforward and efficient means of determining the base state for the vibration analysis. The latter is implemented via a 'waveguide' discretisation of a variational formulation. Its results show that, while the full geometrical description is necessary for a complete and reliable characterisation of the sidewall's vibrational properties, a one-dimensional approximation will often be satisfactory in practice. Meridional thickness variations only become important at higher frequencies (above 500 Hz for the example considered here), and rotational inertia effects appear to be minor at practical vehicle speeds. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
This paper is concerned with the difficulties in model testing deepwater structures at reasonable scales. An overview of recent research efforts to tackle this challenge is given first, introducing the concept of line truncation. Passive truncation has traditionally been the preferred method by industry; however, these techniques tend to suffer in capturing accurately line dynamic response and so reproducing peak tensions. In an attempt to improve credibility of model test data the proposed truncation procedure sets up the truncated model, based on line dynamic response rather than quasi-static system stiffness. Vibration decay of transverse elastic waves due to fluid drag forces is assessed and it is found that below a certain length criterion, the transverse vibrational characteristics for each line are inertia driven, hence with respect to these motions the truncated model can assume a linear damper whose coefficient depends on the local line properties and vibration frequency. Initially a simplified taut string model is assumed for which the line is submerged in still water, one end fixed at the bottom the other assumed to follow the vessel response, which can be harmonic or random. A dimensional analysis, supported by exact benchmark numerical solutions, has shown that it is possible to produce a general guideline for the truncation length criterion, which is suitable for any kind of line with any top motion. The focus of this paper is to extend this work to a more complex line configuration of a conventional deepwater mooring line and so enhance the generality of the truncation guideline. The paper will close with an example case study of a spread mooring system, applying this method to create an equivalent numerical model at a reduced depth that replicates exactly the static and dynamic characteristics of the full depth system. Copyright © 2012 by ASME.
Resumo:
In the first part of the paper steady two-phase flow predictions have been performed for the last stage of a model steam turbine to examine the influence of drag between condensed fog droplets and the continuous vapour phase. In general, droplets due to homogeneous condensation are small and thus kinematic relaxation provides only a minor contribution to the wetness losses. Different droplet size distributions have been investigated to estimate at which size inter-phase friction becomes more important. The second part of the paper deals with the deposition of fog droplets on stator blades. Results from several references are repeated to introduce the two main deposition mechanisms which are inertia and turbulent diffusion. Extensive postprocessing routines have been programmed to calculate droplet deposition due to these effects for a last stage stator blade in three-dimensions. In principle the method to determine droplet deposition by turbulent diffusion equates to that of Yau and Young [1] and the advantages and disadvantages of this relatively simple method are discussed. The investigation includes the influence of different droplet sizes on droplet deposition rates and shows that for small fog droplets turbulent diffusion is the main deposition mechanism. If the droplets size is increased inertial effects become more and more important and for droplets around 1 μm inertial deposition dominates. Assuming realistic droplet sizes the overall deposition equates to about 1% to 3% of the incoming wetness for the investigated guide vane at normal operating conditions. Copyright © 2013 by Solar Turbines Incorporated.
Resumo:
The optical properties of quantum rods in the absence and presence of the magnetic field are studied in the framework of effective-mass envelope function theory. The two-dimensional (2D) and 1D transition dipoles of wurtzite quantum rods are investigated. It is found that the transition dipoles change from 2D to 1D as the aspect ratio of the ellipsoid increases, in agreement with the experimental results. The linear polarization factors of optical transitions of quantum rods with critical aspect ratio are zero at every orientation of the wave propagation. So quantum rods with critical aspect ratio have isotropic transition dipoles. Due to the 2D or 1D transition dipoles, the linear polarization factors of optical transitions of quantum rods change from negative or positive values to zero as the orientation of the wave propagation changes from the x axis of the crystal structure to the z axis, in agreement with the experimental results. Under magnetic field applied along the z axis of the crystal structure, the negative linear polarization factors in the 2D transition dipole case decrease as the magnetic field increases, while under magnetic field applied along the x axis, the negative linear polarization factors increase as the magnetic field increases. The antisymmetric Hamiltonian is very important to these effects of the magnetic field. It is found that quantum rods with a given radius at a given temperature have dark excitons in a range of aspect ratio. The dimensions along the x, y axes of the crystal structure play opposite roles to the dimension along the z axis on the dark exciton phenomenon. Dark excitons become bright under appropriate magnetic field.
Resumo:
In this paper, a novel mathematical model of neuron-Double Synaptic Weight Neuron (DSWN)(l) is presented. The DSWN can simulate many kinds of neuron architectures, including Radial-Basis-Function (RBF), Hyper Sausage and Hyper Ellipsoid models, etc. Moreover, this new model has been implemented in the new CASSANN-II neurocomputer that can be used to form various types of neural networks with multiple mathematical models of neurons. The flexibility of the DSWN has also been described in constructing neural networks. Based on the theory of Biomimetic Pattern Recognition (BPR) and high-dimensional space covering, a recognition system of omni directionally oriented rigid objects on the horizontal surface and a face recognition system had been implemented on CASSANN-II neurocomputer. In these two special cases, the result showed DSWN neural network had great potential in pattern recognition.
Resumo:
The shape dependence of electronic structure, electron g factors in the presence of the external magnetic field of InSb quantum ellipsoids are investigated in the framework of eight-band effective-mass approximation. It is found that as the increasing aspect ratio e, the electron states with P character split into three doublets for the different physical interaction and the light-hole states with S character come up to the top of valence bands at e = 2.6 in comparison with the heavy-hole states. In the presence of the external magnetic field, the energy splits of electron states are different for their wave function distribution direction, and the hole ground state remain optical active for a suitable aspect ratio. The electron g factors of InSb spheres decrease with increasing radius, and have the value of about two for the smallest radius, about -47.2 for sufficiently larger radius, similar to the bulk material case. Actually, the electron g factors decrease as any one of the three dimensions increase. The more dimensions increase, the more g factors decrease. The dimensions perpendicular to the direction of the magnetic field affect the g factors more than the other dimensions. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The electronic structure, electron and hole g factors and optical properties of CdTe quantum ellipsoids are investigated, in the framework of eight-band effective-mass approximation. It is found that the light-hole states come down in comparison with the heavy-hole states when the spheres are elongated, and become the lowest states of valence band. When the aspect ratio of the ellipsoid length to diameter (e) changes from smaller than 1 to larger than 1, the linear polarization factors change from negative to positive. The electron g factors of CdTe spheres decrease with increasing radius, and are nearly 2 when the radius is very small. Actually, as some of the three dimensions increase, the electron g factors decrease. More dimensions increase, the g factors decrease. more. The dimensions perpendicular to the direction of the magnetic field affect the g factors more than the other dimension. The light-hole and heavy-hole g factors of quantum spheres are equal, and change from 0.88 to -1.14 with increasing radius. When e < 1 (e > 1) the light-hole g factor is smaller (larger) than the heavy-hole g factor. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The available experimental results have shown that in time-periodic motion the rheology of fluid mud displays complex viscoelastic behaviour. Based on the measured rheology of fluid mud from two field sites, we study the interaction of water waves and fluid mud by a two-layered model in which the water above is assumed to be inviscid and the mud below is viscoelastic. As the fluid-mud layer in shallow seas is usually much thinner than the water layer above, the sharp contrast of scales enables an approximate analytical theory for the interaction between fluid mud and small-amplitude waves with a narrow frequency band. It is shown that at the leading order and within a short distance of a few wavelengths, wave pressure from above forces mud motion below. Over a Much longer distance, waves are modified by the accumulative dissipation in mud. At the next order, infragravity waves owing to convective inertia (or radiation stresses) are affected indirectly by mud motion through the slow modulation of the short waves. Quantitative predictions are made for mud samples of several concentrations and from two different field sites.
Resumo:
Excitation functions of the reaction products B, C, N, O, F and Ne emitted from the dissipative reaction of (19) F+(27) Al have been measured at incident energies from 110.25MeV to 118.75MeV in steps of 250keV. The moments of inertia of the intermediate dinuclear system formed in the reaction are extracted from the energy autocorrelation functions of the products. Comparing the moment of inertia extracted from the experimental data with the calculated one by using the sticking limit, it indicates that the formed dinuclear system has a large deformation in the reaction process.
Resumo:
We investigate the effect of the calar-isovector delta-meson field on the equation of state (EOS) and composition of hyperonic neutron star matter, and the properties of hyperonic neutron stars within the frame work of the relativistic mean field theory. The influence of the delta-field turns out to be quite different and generally weaker for hyperonic neutron star matter as compared to that for npe mu neutron star matter. We find that inclusion of the delta-field enhances the strangeness content slightly and consequently moderately softens the EOS of neutron star matter in its hyperonic phase. As for the composition of hyperonic star matter, the effect of the delta-field is shown to shift the onset of the negatively-charged (positively-charged) hyperons to slightly lower (higher) densities and to enhance (reduce) their abundances. The influence of the delta-field on the maximum mass of hyperonic neutron stars is found to be fairly weak, where as inclusion of the delta-field turns out to enhance sizably both the radii and the moments of inertia of neutron stars with given masses. It is also shown that the effects of the delta-field on the properties of hyperonic neutron stars remain similar in the case of switching off the Sigma hyperons.
Resumo:
Recent experiments have reached the neutron-rich Cr isotope with N = 40 and confirmed enhanced collectivity near this subshell. The current data focus on low-spin spectroscopy only, with little information on the states where high-j particles align their spins with the system rotation. By applying the projected shell model, we show that rotation alignment occurs in neutron-rich even-even Cr nuclei as early as spin 8 (h) over bar h and, owing to shell filling, the aligning particles differ in different isotopes. It is suggested that observation of irregularities in moments of inertia is a direct probe of the deformed single-particle scheme in this exotic mass region.
Resumo:
Knowledge Innovation Project of Chinese Academy of Sciences [KZCX3-SW-347]; National Science Fund for Distinguished Young Scholar [40225004]
Resumo:
We developed a direct partitioning method to construct a seamless discrete global grid system (DGGS) with any resolution based on a two-dimensional projected plane and the earth ellipsoid. This DGGS is composed of congruent square grids over the projected plane and irregular ellipsoidal quadrilaterals on the ellipsoidal surface. A new equal area projection named the parallels plane (PP) projection derived from the expansion of the central meridian and parallels has been employed to perform the transformation between the planar squares and the corresponding ellipsoidal grids. The horizontal sides of the grids are parts of the parallel circles and the vertical sides are complex ellipsoidal curves, which can be obtained by the inverse expression of the PP projection. The partition strategies, transformation equations, geometric characteristics and distortions for this DGGS have been discussed. Our analysis proves that the DGGS is area-preserving while length distortions only occur on the vertical sides off the central meridian. Angular and length distortions positively correlate to the increase in latitudes and the spanning of longitudes away from a chosen central meridian. This direct partition only generates a small number of broken grids that can be treated individually.