964 resultados para Induced Exposure.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidase complex has been shown to be involved in the process of glucose-stimulated insulin secretion (GSIS). In this study, we examined the effect of palmitic acid on superoxide production and insulin secretion by rat pancreatic islets and the mechanism involved. Rat pancreatic islets were incubated during 1 h with 1 mM palmitate, 1% fatty acid free-albumin, 5.6 or 10 mM glucose and in the presence of inhibitors of NAD(P)H oxidase (DPI-diphenyleneiodonium), PKC (calphostin C) and carnitine palmitoyl transferase-I (CPT-I) (etomoxir). Superoxide content was determined by hydroethidine assays. Palmitate increased superoxide production in the presence of 5.6 and 10 mM glucose. This effect was dependent on activation of PKC and NAD(P)H oxidase. Palmitic acid oxidation was demonstrated to contribute for the fatty acid induction of superoxide production in the presence of 5.6 mM glucose. In fact, palmitate caused p47(PHOX) translocation to plasma membrane, as shown by immunohistochemistry. Exposure to palmitate for 1 h up-regulated the protein content of p47(PHOX) and the mRNA levels of p22(PHOX), gp91(PHOX), p47(PHOX), proinsulin and the G protein-coupled receptor 40 (GPR40). Fatty acid stimulation of insulin secretion in the presence of high glucose concentration was reduced by inhibition of NAD(P)H oxidase activity. In conclusion, NAD(P)H oxidase is an important source of superoxide in pancreatic islets and the activity of NAD(P)H oxidase is involved in the control of insulin secretion by palmitate. J. Cell. Physiol. 226: 1110-1117, 2011. (C) 2010 Wiley-Liss, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The amygdala plays a critical role in determining the emotional significance of sensory stimuli and the production of fear-related responses. Large amygdalar lesions have been shown to practically abolish innate defensiveness to a predator; however, it is not clear how the different amygdalar systems participate in the defensive response to a live predator. Our first aim was to provide a comprehensive analysis of the amygdalar activation pattern during exposure to a live cat and to a predator-associated context. Accordingly, exposure to a live predator up-regulated Fos expression in the medial amygdalar nucleus (MEA) and in the lateral and posterior basomedial nuclei, the former responding to predator-related pheromonal information and the latter two nuclei likely to integrate a wider array of predatory sensory information, ranging from olfactory to non-olfactory ones, such as visual and auditory sensory inputs. Next, we tested how the amygdalar nuclei most responsive to predator exposure (i.e. the medial, posterior basomedial and lateral amygdalar nuclei) and the central amygdalar nucleus (CEA) influence both unconditioned and contextual conditioned anti-predatory defensive behavior. Medial amygdalar nucleus lesions practically abolished defensive responses during cat exposure, whereas lesions of the posterior basomedial or lateral amygdalar nuclei reduced freezing and increased risk assessment displays (i.e. crouch sniff and stretch postures), a pattern of responses compatible with decreased defensiveness to predator stimuli. Moreover, the present findings suggest a role for the posterior basomedial and lateral amygdalar nuclei in the conditioning responses to a predator-related context. We have further shown that the CEA does not seem to be involved in either unconditioned or contextual conditioned anti-predatory responses. Overall, the present results help to clarify the amygdalar systems involved in processing predator-related sensory stimuli and how they influence the expression of unconditioned and contextual conditioned anti-predatory responses. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Behavioral sensitization, defined as a progressive increase in the locomotor stimulant effects elicited by repeated exposure to drugs of abuse, has been used as an animal model for drug craving in humans. The mesoaccumbens dopaminergic system has been proposed to be critically involved in this phenomenon; however, few studies have been designed to systematically investigate the effects of dopaminergic antagonists on development and expression of behavioral sensitization to ethanol in Swiss mice. We first tested the effects of D(1) antagonist SCH-23390 (0-0.03 mg/kg) or D(2) antagonist Sulpiride (0-30 mg/kg) on the locomotor responses to an acute injection of ethanol (2.0 g/kg). Results showed that all tested doses of the antagonists were effective in blocking ethanol`s stimulant effects. In another set of experiments, mice were pretreated intraperitoneally with SCH-23390 (0.01 mg/kg) or Sulpiride (10 mg/kg) 30 min before saline or ethanol injection, for 21 days. Locomotor activity was measured weekly for 20 min. Four days following this pretreatment, all mice were challenged with ethanol. Both antagonists attenuated the development of ethanol sensitization, but only SCH-23390 blocked the expression of ethanol sensitization according to this protocol. When we tested a single dose (30 min before tests) of either antagonist in mice treated chronically with ethanol, both antagonists attenuated ethanol-induced effects. The present findings demonstrate that the concomitant administration of ethanol with D(1) but not D(2) antagonist prevented the expression of ethanol sensitization, suggesting that the neuroadaptations underlying ethanol behavioral sensitization depend preferentially on D(1) receptor actions. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although the anti-inflammatory actions of glucocorticoids (GCs) are well established, evidence has accumulated showing that proinflammatory GC effects can occur in the brain, in a poorly understood manner. Using electrophoretic mobility shift assay, real-time PCR, and immunoblotting, we investigated the ability of varying concentrations of corticosterone (CORT, the GC of rats) to modulate lipopolysaccharide (LPS)-induced activation of NF-kappa B (nuclear factor kappa B), expression of anti- and proinflammatory factors and of the MAP (mitogen-activated protein) kinase family [ERK (extracellular signal-regulated kinase), p38, and JNK/ SAPK (c-Jun N-terminal protein kinase/ stress-activated protein kinase)], and AKT. In the frontal cortex, elevated CORT levels were proinflammatory, exacerbating LPS effects on NF-kappa B, MAP kinases, and proinflammatory gene expression. Milder proinflammatory GCs effects occurred in the hippocampus. In the absence of LPS, elevated CORT levels increased basal activation of ERK1/ 2, p38, SAPK/ JNK, and AKT in both regions. These findings suggest that GCs do not uniformly suppress neuroinflammation and can even enhance it at multiple levels in the pathway linking LPS exposure to inflammation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exposure to air pollutants such as formaldehyde (FA) leads to inflammation, oxidative stress and immune-modulation in the airways and is associated with airway inflammatory disorders such as asthma. The purpose of our study was to investigate the effects of exposure to FA on the allergic lung inflammation. The hypothesized link between reactive oxygen species and the effects of FA was also studied. To do so, male Wistar rats were exposed to FA inhalation (1%, 90 min daily) for 3 days. and subsequently sensitized with ovalbumin (OVA)-alum by subcutaneous route One week later the rats received another OVA-alum injection by the same route (booster). Two weeks later the rats were challenged with aerosolized OVA. The OVA challenge of rats upon FA exposure induced an elevated release of LTB(4). TXB(2), IL-1 beta, IL-6 and VEGF in lung cells, increased phagocytosis and lung vascular permeability, whereas the cell recruitment into lung was reduced. FA inhalation induced the oxidative burst and the nitration of proteins in the lung Vitamins C, E and apocynin reduced the levels of LTB(4) in BAL-cultured cells of the FA and FA/OVA groups, but Increased the cell influx into the lung of the FA/OVA rats. In OVA-challenged rats, the exposure to FA was associated to a reduced lung endothelial cells expression of intercellular cell adhesion molecule 1 (ICAM-1) In conclusion, our findings suggest that FA down regulate the cellular migration into the lungs after an allergic challenge and increase the ability of resident lung cells likely macrophages to generate inflammatory mediators, explaining the increased lung vascular permeability Our data are indicative that the actions of FA involve mechanisms related to endothelium-leukocyte interactions and oxidative stress, as far as the deleterious effects of this air pollutant on airways are concerned. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Repeated administration of low doses of ethanol gradually increases locomotor responses to ethanol in adult Swiss mice. This phenomenon is known as behavioral sensitization. However, we have shown that adolescent Swiss mice show either behavioral tolerance or no sensitization after repeated ethanol injections. Although the mesolimbic dopamine system has been extensively implicated in behavioral sensitization, several studies have demonstrated an important role of glutamatergic transmission in this phenomenon. In addition, relatively few studies have examined the role of developmental factors in behavioral sensitization to ethanol. To examine the relationship between age differences in behavioral sensitization to ethanol and the neurochemical adaptations related to glutamate within nucleus accumbens (NAc), in vivo microdialysis was conducted in adolescent and adult Swiss mice treated with ethanol (1.8 g/kg) or saline for 15 days and subsequently challenged with an acute dose (1.8 g/kg) of ethanol 6 days later. Consistent with previous findings, only adult mice demonstrated evidence of behavioral sensitization. However, ethanol-treated adolescent mice demonstrated a 196.1 +/- 40.0% peak increase in extracellular levels of glutamate in the NAc after ethanol challenge in comparison with the basal values, whereas ethanol-treated adult mice demonstrated a 52.2 +/- 6.2% reduction in extracellular levels of glutamate in the NAc after ethanol challenge. These observations suggest an age-dependent inverse relationship between behavioral and glutamatergic responses to repeated ethanol exposure. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Propolis, a natural product of plant resins, is used by the bees to seal holes in their honeycombs and protect the hive entrance. However, propolis has also been used in folk medicine for centuries. Here, we apply the power of Saccharomyces cerevisiae as a model organism for studies of genetics, cell biology, and genomics to determine how propolis affects fungi at the cellular level. Propolis is able to induce an apoptosis cell death response. However, increased exposure to propolis provides a corresponding increase in the necrosis response. We showed that cytochrome c but not endonuclease G (Nuc1p) is involved in propolis-mediated cell death in S. cerevisiae. We also observed that the metacaspase YCA1 gene is important for propolis-mediated cell death. To elucidate the gene functions that may be required for propolis sensitivity in eukaryotes, the full collection of about 4,800 haploid S. cerevisiae deletion strains was screened for propolis sensitivity. We were able to identify 138 deletion strains that have different degrees of propolis sensitivity compared to the corresponding wild-type strains. Systems biology revealed enrichment for genes involved in the mitochondrial electron transport chain, vacuolar acidification, negative regulation of transcription from RNA polymerase II promoter, regulation of macroautophagy associated with protein targeting to vacuoles, and cellular response to starvation. Validation studies indicated that propolis sensitivity is dependent on the mitochondrial function and that vacuolar acidification and autophagy are important for yeast cell death caused by propolis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solar radiation sustains and affects all life forms on Earth. The increase in solar UV-radiation at environmental levels, due to depletion of the stratospheric ozone layer, highlights serious issues of social concern. This becomes still more dramatic in tropical and subtropical regions where radiation-intensity is still higher. Thus, there is the need to evaluate the harmful effects of solar UV-radiation on the DNA molecule as a basis for assessing the risks involved for human health, biological productivity and ecosystems. In order to evaluate the profile of DNA damage induced by this form of radiation and its genotoxic effects, plasmid DNA samples were exposed to artificial-UV lamps and directly to sunlight. The induction of cyclobutane pyrimidine dimer photoproducts (CPDs) and oxidative DNA damage in these molecules were evaluated by means of specific DNA repair enzymes. On the other hand, the biological effects of such lesions were determined through the analysis of the DNA inactivation rate and mutation frequency, after replication of the damaged pCMUT vector in an Escherichia coli MBL50 strain. The results indicated the induction of a significant number of CPDs after exposure to increasing doses of UVC, UVB, UVA radiation and sunlight. Interestingly, these photoproducts are those lesions that better correlate with plasmid inactivation as well as mutagenesis, and the oxidative DNA damages induced present very low correlation with these effects. The results indicated that DNA photoproducts play the main role in the induction of genotoxic effects by artificial UV-radiation sources and sunlight. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Clinical and experimental evidences show that formaldehyde (FA) exposure has an irritant effect on the upper airways. As being an indoor and outdoor pollutant, FA is known to be a causal factor of occupational asthma. This study aimed to investigate the repercussion of FA exposure on the course of a lung allergic process triggered by an antigen unrelated to FA. For this purpose, male Wistar rats were subjected to FA inhalation for 3 consecutive days (1%, 90-min daily), subsequently sensitized with ovalbumin (OVA)-alum via the intraperitoneal route, and 2 weeks later challenged with aerosolized OVA. The OVA challenge in rats after FA inhalation (FA/OVA group) evoked a low-intensity lung inflammation as indicated by the reduced enumerated number of inflammatory cells in bronchoalveolar lavage as compared to FA-untreated allergic rats (OVA/OVA group). Treatment with FA also reduced the number of bone marrow cells and blood leukocytes in sensitized animals challenged with OVA, which suggests that the effects of FA had not been only localized to the airways. As indicated by passive cutaneous anaphylactic reaction, FA treatment did not impair the anti-OVA IgE synthesis, but reduced the magnitude of OVA challenge-induced mast cell degranulation. Moreover, FA treatment was associated to a diminished lung expression of PECAM-1 (platelet-endothelial cell adhesion molecule 1) in lung endothelial cells after OVA challenge and an exacerbated release of nitrites by BAL-cultured cells. Keeping in mind that rats subjected solely to either FA or OVA challenge were able to significantly increase the cell influx into lung, our study shows that FA inhalation triggers long-lasting effects that affect multiple mediator systems associated to OVA-induced allergic lung such as the reduction of mast cells activation, PECAM-1 expression and exacerbation of NO generation, thereby contributing to the decrease of cell recruitment after the OVA challenge. In conclusion, repeated expositions to air-borne FA may impair the lung cell recruitment after an allergic stimulus, thereby leading to a non-responsive condition against inflammatory stimuli likely those where mast cells are involved. (C) 2008 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Female sex hormones (FSHs) exert profound regulatory effects on the course of lung inflammation due to allergic and non-allergic immune responses. As pollution is one of the pivotal factors to induce lung dysfunction, in this study we investigated the modulatory role of FSHs on lung inflammation after a formaldehyde (FA) exposure. For this purpose, lung and systemic inflammatory responses were evaluated in terms of leukocytes countings in bronchoalveolar lavage (BAL), peripheral blood and bone marrow lavage from 7-day ovariectomized (OVx) and Sham-OVx rats subjected to FA inhalation for 3 consecutive days. The hypothesized link between effects of FSHs on expression of adhesion molecules and mast cells degranulation was also studied. Once exposed to FA, Sham-OVx rats increased the number of total cells recovered in BAL and of leukocytes in peripheral blood, and decreased the counts in bone marrow. By contrast, in OVx rats upon FA exposure there was a reduction of the total cells counts in BAL and of blood leukocytes: lung expressions of ICAM-1 and Mac-1 were depressed, but the number of bone marrow cells did not vary. Estradiol treatment of OVx rats increased the total cells in BAL and decreased the number of blood leukocytes, whereas the number of bone marrow cell remained unaltered. Progesterone treatment, in turn increased the total cells in BAL and blood leukocytes, but decreased the number of bone marrow cells. OVx rats exposed to FA developed tracheal hyperresponsiveness to methacholine (MCh). A similarly altered response was found between the tracheal segments of Sham-OVx rats after FA exposure and that found in tracheae of naive rats. Estradiol treatment prevented FA-induced tracheal hyperresponsiveness to MCh whereas progesterone was ineffective in this regard. In addition, OVx rats upon FA exposure significantly increased both, the ability of mast cell degranulation and serum corticosterone levels. In conclusion, it was found that FSHs act by distinct control mechanisms on FA-induced lung inflammation and tracheal hyperresponsiveness, since at low circulating levels of FSHs (such as those after OVx) there is some resistance to the development of a lung inflammatory response, but the cholinergic tracheal responsiveness is exacerbated. Our data also help to understand the involvement of FSHs on mast cells activity after pollutants exposure and add information regarding the role of FSHs on the mechanisms related to endothelium-leukocyte interactions. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lung cancer is the leading cause of cancer deaths in the United States, surpassing breast cancer as the primary cause of cancer-related mortality in women. The goal of the present study was to identify early molecular changes in the lung induced by exposure to tobacco smoke and thus identify potential targets for chemoprevention. Female A/J mice were exposed to either tobacco smoke or HEPA-filtered air via a whole-body exposure chamber (6 h/d, 5 d/wk for 3, 8, and 20 weeks). Gene expression profiles of lung tissue from control and smoke-exposed animals were established using a 15K cDNA microarray. Cytochrome P450 1b1, a phase I enzyme involved in both the metabolism of xenobiotics and the 4-hydroxylation of 17 beta-estradiol (E(2)), was modulated to the greatest extent following smoke exposure. A panel of 10 genes were found to be differentially expressed in control and smoke-exposed lung tissues at 3, 8, and 20 weeks (P < 0.001). The interaction network of these differentially expressed genes revealed new pathways modulated by short-term smoke exposure, including estrogen metabolism. In addition, E(2) was detected within murine lung tissue by gas chromatography-coupled mass spectrometry and immunohistochemistry. Identification of the early molecular events that contribute to lung tumor formation is anticipated to lead to the development of promising targeted chemopreventive therapies. In conclusion, the presence of E2 within lung tissue when combined with the modulation of cytochrome P450 1b1 and other estrogen metabolism genes by tobacco smoke provides novel insight into a possible role for estrogens in lung cancer. Cancer Prev Res; 3(6); 707-17. (C) 2010 AACR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epidemiological studies have indicated that Western diets are related to an increase in a series of malignancies. Among the compounds that are credited for this toxic effect are heme and lipid peroxides. We evaluated the effects of hemoglobin (Hb) and linoleic acid hydroperoxides (LAOOH) on a series of toxicological endpoints, such as cytotoxicity, redox status, lipid peroxidation, and DNA damage. We demonstrated that the preincubation of SW480 cells with Hb and its subsequent exposure to LAOOH (Hb + LAOOH) led to an increase in cell death, DCFH oxidation, malonaldehyde formation, and DNA fragmentation and that these effects were related to the peroxide group and the heme present in Hb. Furthermore, Hb and LAOOH alone exerted a toxic effect on the endpoints assayed only at concentrations higher than 100 mu M. We were also able to show that SW480 cells presented a higher level of the modified DNA bases 8-oxo-7,8-dihydro-2`-deoxyguanosine and 1,N(2)-etheno-2`-deoxyguanosine compared to the control. Furthermore, incubations with Hb led to an increase in intracellular iron levels, and this high level of iron correlated with DNA oxidation, as measured as EndoIII- and Fpg-sensitive sites. Thus, Hb from either red meat or bowel bleeding could act as an enhancer of fatty acid hydroperoxide genotoxicity, which contributes to the accumulation of DNA lesions in colon cancer cells. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well established that arsenic toxicity is postulated to be primarily due to the binding of As(III) to sulfhydryl-containing enzymes. However, the mechanism of carcinogenesis induced by arsenic is still unclear. The interaction of arsenic with GSH and related enzymes seems a very important issue regarding mechanism of arsenical induced toxicity or carcinogenesis. The purpose of this work is to investigate the effect of chronic exposure to low dose of As(III) on GSH level, gene expression and cell transformation in NIH3T3 cells. The results showed that long-term, low dose arsenic treatment makes 3T3 cell more resistant to acute arsenic treatment. There were morphology changes after long-term arsenic treatment. First, partially immortalized 3T3 cell became immortalized. In addition, the cells were doubling more quickly than the control cells and attained higher density than the control cells at confluence. Second, cells treated with 0.1 µ.M As(III) exhibited anchorage-independent growth. Arsenic could enhance GSH level at 0.5 -10 µM dose of arsenic in 24 h treatment and decrease it at 25 µM and above. In long-term treatment with low dose of arsenic, GSH levels were decreased. As(I1I) can increase both glutathione S-transferase (GST) and glutathione reductase (GR) activities at low dose (0.5-10 M), but decreased GST and GR activities at 25 M and higher dose of arsenic, while in long-term As(III) treatment, GST and GR activities are increased. Both long-term and short-term treatments with As(III) can induce GR gene expression. GPx mRNA levels were decreased both in acute and chronic arsenic treated cells. Chronic treatment with As(III) also decreased the p53 mRNA level. Taken together, our results suggest that As(III) can alter GST, GR enzyme activities as well as GSH level and related gene expression both in long-term and short-term treatment but in a different manner in different doses. Alteration of cellular GSH level by As(III) might play all important role in gene expression and arsenic induced cell transformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Irinotecan (CPT-11, 7-ethyl-10-[4-(1-piperidino)-1-piperidino] carbonyloxycamptothecin) has exhibited clinical activities against a broad spectrum of carcinomas by inhibiting DNA topoisomerase I (Topo I). However, severe and unpredictable dosing-limiting toxicities (mainly myelosuppression and severe diarrhea) hinder its clinical use. The latter consists of early and late-onset diarrhea, occurring within 24 hr or ≥ 24 hr after CPT-11 administration, respectively. This review highlights novel agents potentially inhibiting CPT-11-induced diarrhea, which are designed and tested under guidance of disposition pathways and potential toxicity mechanisms. Early-onset diarrhea is observed immediately after CPT-11 infusion and probably due to the inhibition of acetylcholinesterase activity, which can be eliminated by administration of atropine. Lateonset diarrhea appears to be associated with intestinal exposure to SN-38 (7-ethyl-10-hydroxycamptothecin), the major active metabolite of CPT-11, which may bind to Topo I and induce apoptosis of intestinal epithelia, leading to the disturbance in the absorptive and secretory functions of mucosa. CPT-11 and SN-38 may also stimulate the production of pro-inflammatory cytokines and prostaglandins (PGs), thus inducing the secretion of Na+ and Cl-. Early treatment of severe late-onset diarrhea with oral high-dose loperamide has decreased patient morbidity. Extensive studies have been conducted to identify other potential agents to ameliorate diarrhea in preclinical and clinical models. These include intestinal alkalizing agents, oral antibiotics, enzyme inducers, P-glycoprotein (PgP) inhibitors, cyclooxygenase-2 (COX-2) inhibitors, tumor necrosis factor-agr (TNF-α) inhibitors, or blockers of biliary excretion of SN-38. Further studies are needed to identify the molecular targets associated with CPT-11 toxicity and safe and effective agents for alleviating CPT-11-induced diarrhea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant innate immunity to pathogenic microorganisms is activated in response to recognition of extracellular or intracellular pathogen molecules by transmembrane receptors or resistance proteins, respectively. The defense signaling pathways share components with those involved in plant responses to UV radiation, which can induce expression of plant genes important for pathogen resistance. Such intriguing links suggest that UV treatment might activate resistance to pathogens in normally susceptible host plants. Here, we demonstrate that pre-inoculative UV (254 nm) irradiation of Arabidopsis (Arabidopsis thaliana) susceptible to infection by the biotrophic oomycete Hyaloperonospora parasitica, the causative agent of downy mildew, induces dose- and time-dependent resistance to the pathogen detectable up to 7 d after UV exposure. Limiting repair of UV photoproducts by postirradiation incubation in the dark, or mutational inactivation of cyclobutane pyrimidine dimer photolyase, (6-4) photoproduct photolyase, or nucleotide excision repair increased the magnitude of UV-induced pathogen resistance. In the absence of treatment with 254-nm UV, plant nucleotide excision repair mutants also defective for cyclobutane pyrimidine dimer or (6-4) photoproduct photolyase displayed resistance to H. parasitica, partially attributable to short wavelength UV-B (280–320 nm) radiation emitted by incubator lights. These results indicate UV irradiation can initiate the development of resistance to H. parasitica in plants normally susceptible to the pathogen and point to a key role for UV-induced DNA damage. They also suggest UV treatment can circumvent the requirement for recognition of H. parasitica molecules by Arabidopsis proteins to activate an immune response.