916 resultados para Indoor Soccer
Resumo:
In this paper we investigate the first and second order characteristics of the received signal at the output ofhypothetical selection, equal gain and maximal ratio combiners which utilize spatially separated antennas at the basestation. Considering a range of human body movements, we model the model the small-scale fading characteristics ofthe signal using diversity specific analytical equations which take into account the number of available signal branchesat the receiver. It is shown that these equations provide an excellent fit to the measured channel data. Furthermore, formany hypothetical diversity receiver configurations, the Nakagami-m parameter was found to be close to 1.
Resumo:
Human occupants within indoor environments are not always stationary and their movement will lead to temporal channel variations that strongly affect the quality of indoor wireless communication systems. This paper describes a statistical channel characterization, based on experimental measurements, of human body effects on line-of-sight indoor narrowband propagation at 5.2 GHz. The analysis shows that, as the number of pedestrians within the measurement location increases, the Ricean K-factor that best fits the empirical data tends to decrease proportionally, ranging from K=7 with 1 pedestrian to K=0 with 4 pedestrians. Level crossing rate results were Rice distributed, while average fade duration results were significantly higher than theoretically computed Rice and Rayleigh, due to the fades caused by pedestrians. A novel CDF that accurately characterizes the 5.2 GHz channel in the considered indoor environment is proposed. For the first time, the received envelope CDF is explicitly described in terms of a quantitative measurement of pedestrian traffic within the indoor environment.
Resumo:
In existing WiFi-based localization methods, smart mobile devices consume quite a lot of power as WiFi interfaces need to be used for frequent AP scanning during the localization process. In this work, we design an energy-efficient indoor localization system called ZigBee assisted indoor localization (ZIL) based on WiFi fingerprints via ZigBee interference signatures. ZIL uses ZigBee interfaces to collect mixed WiFi signals, which include non-periodic WiFi data and periodic beacon signals. However, WiFi APs cannot be identified from these WiFi signals by ZigBee interfaces directly. To address this issue, we propose a method for detecting WiFi APs to form WiFi fingerprints from the signals collected by ZigBee interfaces. We propose a novel fingerprint matching algorithm to align a pair of fingerprints effectively. To improve the localization accuracy, we design the K-nearest neighbor (KNN) method with three different weighted distances and find that the KNN algorithm with the Manhattan distance performs best. Experiments show that ZIL can achieve the localization accuracy of 87%, which is competitive compared to state-of-the-art WiFi fingerprint-based approaches, and save energy by 68% on average compared to the approach based on WiFi interface.
Resumo:
BACKGROUND:
It is compulsory that domestic football/soccer teams in UEFA competitions organise players' pre-participation medicals. Although screening guidelines have been established, these remain controversial. The findings of medical examinations can have lasting consequences for athletes and doctors. No previous studies have reported UEFA pre-participation screening results in semi-professional footballers. This study aims to further knowledge regarding 'normal' data in this population.
METHOD:
Retrospective audit and analysis of records of pre-season medicals for all male first-team players at one semi-professional Northern Ireland Premiership team between 2009-2012. Medicals were conducted by the club doctor following the UEFA proforma. Height, weight, blood pressure (BP), full blood count (FBC), dipstick urinalysis and resting electrocardiogram (ECG) were conducted by an independent nurse. Only one ECG must be documented during a player's career; other tests are repeated yearly.
RESULTS:
89 medicals from 47 players (6 goalkeepers, 11 defenders, 22 midfielders and 8 attackers; mean age 25.0 years (SD 4.86)) were reviewed. Mean height of the players was 179.3 cm (SD 5.90) with a mean weight of 77.6 kg (SD 10.5). Of 89 urine dipsticks, 7 were positive for protein; all 7 were normal on repeat testing following 48 hours of rest. Of 40 ECGs (mean ventricular rate 61.2 bpm (SD 11.6)), one was referred to cardiology (right bundle branch block; prolonged Q-T interval). No players were excluded from participation.
CONCLUSIONS:
This study provides important information about 'normal' values in a population of semi-professional footballers. Urinalysis showing protein is not uncommon but is likely to be normal on repeat testing.
Resumo:
A resazurin (Rz) based photocatalyst activity indicator ink (paii) is used to test the activity of commercial self-cleaning materials. The semiconductor photocatalyst driven colour change of the ink is monitored indoors and outside using a simple mobile phone application that measures the RGB colour components of the digital image of the paii-covered, irradiated sample in real time. The results correlate directly with those generated using a traditional, lab-bound method of analysis (UV–vis spectrophotometry).
Resumo:
In this paper we investigate the received signal characteristics of a mobile chest-worn transmitter at 5.8 GHz within a high multipath indoor environment. The off-body channel measurements considered both the co- and cross-polarized received signal for both line-of-sight (LOS) and non-LOS (NLOS) conditions. A straightforward channel model based upon the estimated path loss, a lognormal slow fading component and Ricean small-scale fading contribution is developed and used to perform simulations which allow the generation of first order received signal power characteristics.
Resumo:
Active radio-frequency identification systems that are used for the localisation and tracking of people will be subject to the same body centric processes that impact other forms of wearable communications. To achieve the goal of creating body worn tags with multiyear life spans, it will be necessary to gain an understanding of the channel conditions which are likely to impact the reader-tag interrogation process. In this paper we present the preliminary results of an indoor channel measurement campaign conducted at 868 MHz aimed at understanding and modelling signal characteristics for a wrist-worn tag. Using a model selection process based on the Akaike Information Criterion, the lognormal distribution was selected most often to describe the received signal amplitude. Parameter estimates are provided so that the channels investigated in this study may be readily simulated.
Resumo:
This paper investigates the characteristics of the shadowed fading observed in off-body communications channels at 5.8 GHz using the κ-μ / gamma composite fading model. Realistic measurements have been conducted considering four individual scenarios namely line of sight (LOS) and non-LOS (NLOS) walking, rotation and random movements within an indoor laboratory environment. It is shown that the κ-μ / gamma composite fading model provides a better fit to the fading observed in off-body communications channels compared to the conventional Nakagami-m and Rician fading models.
Resumo:
Mutual variation of the received signal which occurs as a consequence of the channel reciprocity property has recently been proposed as a viable method for secret key generation. However, this cannot be strictly maintained in practice as the property is applicable only in the absence of interference. To ensure the propagation defined key remains secret, one requirement is that there remain high degrees of uncertainty between the legitimate users channel response and that of any eavesdropper's. In this paper, we investigate whether such de-correlation occurs for an indoor point-to-point link at 2.45 GHz. This is achieved by computing the localized correlation coefficient between the simultaneous channel response measured by the legitimate users and that of multiple distributed eavesdroppers for static and dynamic scenarios.
Resumo:
This paper investigates the environmental conditions inside a highly-glazed cross-ventilated meeting room. A 3D computational fluid dynamics (CFD) model of an indoor environment is developed with the support of the field measurements performed in a normally operating room. The work presented here follows the steps of the formal calibration methodology for the development of CFD models of naturally ventilated environments. This paper utilises the calibration methodology in order to predict environmental conditions within the highly-glazed cross-ventilated room occupied by people. The CFD model is verified and validated with field measurements performed in an operating building. Moreover, parametric analysis determines the most influential boundary conditions on indoor air temperatures and air speeds