991 resultados para Inclusion Complex
Resumo:
Four Saccharomyces cerevisiae Brazilian industrial ethanol production strains were grown, under shaken and static conditions, in media containing 22% (w/v) sucrose supplemented with nitrogen sources varying from a single ammonium salt (ammonium sulfate) to free amino acids (casamino acids) and peptides (peptone). Sucrose fermentations by Brazilian industrial ethanol production yeasts strains were strongly affected by both the structural complexity of the nitrogen source and the availability of oxygen. Data suggest that yeast strains vary in their response to the nitrogen source`s complex structure and to oxygen availability. In addition, the amount of trehalose produced could be correlated with the fermentation performance of the different yeasts, suggesting that efficient fuel ethanol production depends on finding conditions which are appropriate for a particular strain, considering demand and dependence on available nitrogen sources in the fermentation medium.
Resumo:
Glucose and fructose fermentations by industrial yeasts strains are strongly affected by both the structural complexity of the nitrogen Source and the availability of oxygen. In this Study two Saccharomyces cerevisiae industrial wine strains were grown, under shaken and static conditions, in a media containing either a) 20% (w/v) glucose, or b) 10% (w/v) fructose and 10% (w/v) glucose or c) 20% (w/v) fructose, all supplemented with nitrogen Sources varying from a single ammonium salt (ammonium Sulfate) to free amino acids (casamino acids) and peptides (peptone). Data Suggest that 1 complex Structured nitrogen source is not submitted to the same control mechanisms as those involved in the utilization of simpler structured nitrogen Sources, and mutual interaction between carbon and nitrogen Sources, including the mechanisms involved ill the regulation of aerobic/anaerobic metabolism, may play in important role in defining yeast fermentation performance and the differing response to the structural complexity of the nitrogen Source, with a strong impact oil fermentation performance.
Resumo:
This paper argues that the idea of inclusion is linked to the democratic tradition rather than to the republican one. By analyzing the origins and meaning of these two concepts, the author holds that democracy is rather linked to desire and republic to will (and to the expression of desire), and concludes that, since North Atlantic political tradition has not given a key role to desire, democracy, in order to overcome the difficulties it has been encountering in all parts of the world, should take more account of desire and of the social struggles it brings to the fore.
Resumo:
Burkholderia cepacia complex isolates obtained by microbiological culture of respiratory samples from Brazilian CF patients were studied by recA based PCR, screened by specific PCR for virulence markers and genotyped by RAPD. Forty-one isolates of B. cepacia complex were identified by culture and confirmation of identity and genomovar determination obtained in 32 isolates, with predominance of B. cenocepacia (53.1%). Virulence markers were not consistently found among isolates. Genotyping did not identify identical patterns among different patients. B. cenocepacia was the most prevalent B. cepacia complex member among our patients, and cross-infection does not seem to occur among them. V 2008 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.
Resumo:
We describe the mechanism of ribonuclease inhibition by ribonuclease inhibitor, a protein built of leucine-rich repeats, based on the crystal structure of the complex between the inhibitor and ribonuclease A. The structure was determined by molecular replacement and refined to an R(cryst) of 19.4% at 2.5 Angstrom resolution. Ribonuclease A binds to the concave region of the inhibitor protein comprising its parallel beta-sheet and loops. The inhibitor covers the ribonuclease active site and directly contacts several active-site residues. The inhibitor only partially mimics the RNase-nucleotide interaction and does not utilize the pi phosphate-binding pocket of ribonuclease A, where a sulfate ion remains bound. The 2550 Angstrom(2) of accessible surface area buried upon complex formation may be one of the major contributors to the extremely tight association (K-i = 5.9 x 10(-14) M). The interaction is predominantly electrostatic; there is a high chemical complementarity with 18 putative hydrogen bonds and salt links, but the shape complementarity is lower than in most other protein-protein complexes. Ribonuclease inhibitor changes its conformation upon complex formation; the conformational change is unusual in that it is a plastic reorganization of the entire structure without any obvious hinge and reflects the conformational flexibility of the structure of the inhibitor. There is a good agreement between the crystal structure and other biochemical studies of the interaction. The structure suggests that the conformational flexibility of RI and an unusually large contact area that compensates for a lower degree of complementarity may be the principal reasons for the ability of RI to potently inhibit diverse ribonucleases. However, the inhibition is lost with amphibian ribonucleases that have substituted most residues corresponding to inhibitor-binding residues in RNase A, and with bovine seminal ribonuclease that prevents inhibitor binding by forming a dimer. (C) 1996 Academic Press Limited
Resumo:
Single session repetitive transcranial magnetic stimulation (rTMS) of the motor cortex (M1) is effective in the treatment of chronic pain patients but the analgesic effect of repeated sessions is still unknown We evaluated the effects of rTMS in patients with refractory pain due to complex regional pain syndrome (CRPS) type I Twenty three patients presenting CRPS type I of 1 upper limb were treated with the best medical treatment (analgesics and adjuvant medications physical therapy) plus 10 daily sessions of either real (r) or sham (s) 10Hz rTMS to the motor cortex (M1) Patients were assessed daily and after 1 week and 3 months after the last session using the Visual Analogical Scale (VAS) the McGill Pain Questionnaire (MPQ) the Health Survey 36 (SF 36) and the Hamilton Depression (HDRS) During treatment there was a significant reduction in the VAS scores favoring the r rTMS group mean reduction of 4 65 cm (50 9%) against 2 18 cm (24 7%) in the s rTMS group The highest reduction occurred at the tenth session and correlated to improvement in the affective and emotional subscores of the MPQ and SF 36 Real rTMS to the M1 produced analgesic effects and positive changes in affective aspects of pain in CRPS patients during the period of stimulation Perspective This study shows an efficacy of repetitive sessions of high frequency rTMS as an add on therapy to refractory CAPS type I patients It had a positive effect in different aspects of pain (sensory discriminative and emotional affective) It opens the perspective for the clinical use of this technique (C) 2010 by the American Pain Society
Resumo:
The settling characteristics of cell debris and inclusion bodies prior to, and following, fractionation in a disc-stack centrifuge were measured using Cumulative Sedimentation Analysis (CSA) and Centrifugal Disc photosedimentation (CDS). The impact of centrifuge feedrate and repeated homogenisation on both cell debris and inclusion body collection efficiency was investigated. Increasing the normalised centrifuge feedrate (Q/Sigma) from 1.32 x 10(-9) m s(-1) to 3.97 x 10(-9) m s(-1) leads to a 36% increase in inclusion body paste purity. Purity may also be improved by repeated homogenisation. Increasing the number of homogeniser passes results in smaller cell debris size whilst leaves inclusion body size unaltered. At a normalised centrifuge feedrate of 2.65 x 10(-9) m s(-1), increasing the number of homogeniser passes from two (2) to ten (10) improved overall inclusion body paste purity by 58%. Grade-efficiency curves for both the cell debris and inclusion bodies have also been generated in this study. The data are described using an equation developed by Mannweiler (1989) with parameters of k = 0.15-0.26 and n = 2.5-2.6 for inclusion bodies, and k = 0.12-0.14 and n = 2.0-2.2 for cell debris. This is the first accurate experimentally-determined grade efficiency curve for cell debris. Previous studies have simply estimated debris grade efficiency curves using an approximate debris size distribution and grade efficiency curves determined with 'ideal particles' (e.g. spherical PVA particles). The findings of this study may be used to simulate and optimise the centrifugal fractionation of inclusion bodies from cell debris.
Resumo:
Termination of DNA replication in Bacillus subtilis involves the polar arrest of replication forks by a specific complex formed between the replication terminator protein (RTP) and DNA terminator sites. While determination of the crystal structure of RTP has facilitated our understanding of how a single RTP dimer interacts with terminator DNA, additional information is required in order to understand the assembly of a functional fork arrest complex, which requires an interaction between two RTP dimers and the terminator site. In this study, we show that the conformation of the major B. subtilis DNA terminator, Terl, becomes considerably distorted upon binding RTP. Binding of the first dimer of RTP to the B site of Terl causes the DNA to become slightly unwound and bent by similar to 40 degrees. Binding of a second dimer of RTP to the A site causes the bend angle to increase to similar to 60 degrees. We have used this new data to construct two plausible models that might explain how the ternary terminator complex can block DNA replication in a polar manner, in the first model, polarity of action is a consequence of the two RTP-DNA half-sites having different conformations. These different conformations result from different RTP-DNA contacts at each half-site (due to the intrinsic asymmetry at the terminator DNA), as well as interactions (direct or indirect) between the RTP dimers on the DNA. In the second model, polar fork arrest activity is a consequence of the different affinities of RTP for the A and B sites of the terminator DNA, modulated significantly by direct or indirect interactions between the RTP dimers.
Resumo:
Sickle-cell disease is the most prevalent genetic disease in the Brazilian population. Lower limb ulcers are the most frequent cutaneous complications, affecting 8% to 10% of the patients. These ulcers are usually deep and may take many years to heal. Evidence about the effectiveness of systemic or topical treatment of these wounds is limited, apart from stabilization of the anemia. A 28-year old woman with sickle-cell disease was admitted for treatment of three deep chronic lower leg ulcers. All wounds had tendon exposure and contained firmly adherent fibrin slough. Following surgical debridement and before grafting, the wounds were managed with three different dressings: a rayon and normal saline solution dressing, a calcium alginate dressing covered with gauze, and negative pressure therapy. All three wounds healed successfully and their grafts showed complete integration; only the rayon-dressed wound required a second debridement. The alginate and rayon-dressed wounds recurred after 9 months and required additional skin grafts. Helpful research on managing ulcers in patients with sickle-cell disease is minimal, but the results of this case study suggest that topical treatment modalities may affect outcomes. Research to explore the safety and effectiveness of NPT in patients with sickle-cell wounds is warranted.
Resumo:
Reconstruction of the nipple-areola complex (NAC) is the last stage of breast reconstruction and represents the search for symmetry in regard to the contralateral breast. The objective of this study was to present an areola reconstruction technique with local skin graft to improve the texture and aspect of the reconstructed areola, searching for a natural look. This technique was performed on 122 patients who in the period from January 2000 to December 2005 were submitted to nipple and areola reconstruction. Once the position of the new nipple was determined, markings were made for the reconstruction of the areola. Then the external limit of the new areola was incised and the skin was centripetally deepidermized up to 85% of its diameter. After this procedure the detached skin was repositioned in its bed as a graft and sutured with 4.0 mononylon thread. Incisions with an 11-blade scalpel were then made in V and C forms associated with the detachment of this skin of the receptor area along the local graft so that at the end of the healing process they would determine alterations in the areolar texture mimicking the texture of a normal areola. All patients underwent tattooing 3 months after reconstruction of the NAC taking into account the different shades of the contralateral areola and nipple colors. The use of a local skin graft associated with C and V incisions allowed alteration in the texture of the reconstructed areola. The use of different ink shades for tattooing helped to give a tridimensional aspect to this areola. These factors determined a good aesthetic result in these patients. This areola reconstruction using a local skin graft allows change in the areola texture and a tridimensional aspect similar to that of a normal areola without the inconvenience of grafting from a distance.
Resumo:
The class II major histocompatibility complex molecule I-A(g7) is strongly linked to the development of spontaneous insulin-dependent diabetes mellitus (IDDM) in non obese diabetic mice and to the induction of experimental allergic encephalomyelitis in Biozzi AB/H mice. Structurally, it resembles the HLA-DQ molecules associated with human IDDM, in having a non-Asp residue at position 57 in its beta chain. To identify the requirements for peptide binding to I-A(g7) and thereby potentially pathogenic T cell epitopes, we analyzed a known I-A(g7)-restricted T cell epitope, hen egg white lysozyme (HEL) amino acids 9-27. NH2- and COOH-terminal truncations demonstrated that the minimal epitope for activation of the T cell hybridoma 2D12.1 was M12-R21 and the minimum sequence for direct binding to purified I-A(g7) M12-Y20/K13-R21. Alanine (A) scanning revealed two primary anchors for binding at relative positions (p) 6 (L) and 9 (Y) in the HEL epitope. The critical role of both anchors was demonstrated by incorporating L and Y in poly(A) backbones at the same relative positions as in the HEL epitope. Well-tolerated, weakly tolerated, and nontolerated residues were identified by analyzing the binding of peptides containing multiple substitutions at individual positions. Optimally, p6 was a large, hydrophobic residue (L, I, V, M), whereas p9 was aromatic and hydrophobic (Y or F) or positively charged (K, R). Specific residues were not tolerated at these and some other positions. A motif for binding to I-A(g7) deduced from analysis of the model HEL epitope was present in 27/30 (90%) of peptides reported to be I-A(g7)-restricted T cell epitopes or eluted from I-A(g7). Scanning a set of overlapping peptides encompassing human proinsulin revealed the motif in 6/6 good binders (sensitivity = 100%) and 4/13 weak or non-binders (specificity = 70%). This motif should facilitate identification of autoantigenic epitopes relevant to the pathogenesis and immunotherapy of IDDM.
Resumo:
A dinuclear macrocyclic complex is synthesized via the one-pot reaction of dipotassium nitroacetate, formaldehyde and a linear tetraamine copper(II) complex; the X-ray crystal structure of the product reveals an association of two dinuclear complexes to form a novel tetracopper(II) species.
Resumo:
Purpose The purpose of this report was to demonstrate the normal complex insertional anatomy of the tibialis posterior tendon (TPT) in cadavers using magnetic resonance (MR) imaging with anatomic and histologic correlation. Material and methods Ten cadaveric ankles were used according to institutional guidelines. MR T1-weighted spin echo imaging was performed to demonstrate aspects of the complex anatomic distal insertions of the TPT in cadaveric specimens. Findings on MR imaging were correlated with those derived from anatomic and histologic study. Reults Generally, the TPT revealed a low signal in all MR images, except near the level of the medial malleolus, where the TPT suddenly changed direction and ""magic angle"" artifact could be observed. In five out of ten specimens (50%), a type I accessory navicular bone was found in the TPT. In all cases with a type I accessory navicular bone, the TPT had an altered signal in this area. Axial and coronal planes on MR imaging were the best in identifying the distal insertions of the TPT. A normal division of the TPT was observed just proximal to the insertion into the navicular bone in five specimens (100%) occurring at a maximum proximal distance from its attachment to the navicular bone of approximately 1.5 to 2 cm. In the other five specimens, in which a type I accessory navicular bone was present, the TPT directly inserted into the accessory bone and a slip less than 1.5 mm in thickness could be observed attaching to the medial aspect of the navicular bone (100%). Anatomic inspection confirmed the sites of the distal insertions of the components of the TPT. Conclusion MR imaging enabled detailed analysis of the complex distal insertions of the TPT as well as a better understanding of those features of its insertion that can simulate a lesion.
Resumo:
Purpose. To examine the postnatal development of major histocompatibility complex (MHC) class II-positive dendritic cells (DC) in the iris of the normal rat eye. Methods. Single-and double-color immunomorphologic studies were performed on whole mounts prepared from rat iris taken at selected postnatal ages (2 to 3 days to 78 weeks). Immunopositive cells were enumerated, using a quantitative light microscope, and MHC class II expression on individual cells was assessed by microdensitometric analysis. Results. Major histocompatibility class II-positive DCs in the iris developed in an age-dependent manner and reached adult-equivalent density and structure at approximately 10 weeks of age, considerably later than previously described in other DC populations in the rat. In contrast, the anti-rat DC monoclonal antibody OX62 revealed a population of cells present at adult-equivalent levels as early as 3 weeks after birth. Dual-color immunostaining and microdensitometric analysis demonstrated that during postnatal growth, development of the network of MHC class II-positive DCs was a consequence of the progressive increase in expression of MHC class II antigen by OX62-positive cells. Conclusions. During postnatal growth, the DC population of the iris develops initially as an OX62-positive-MHC class II-negative population, which then develops increasing MHC class II expression in situ and finally resembles classic DC populations in other tissue sites. Maturation of the iris DC population is temporally delayed compared with time to maturation in other tissue sites in the rat.