980 resultados para IRREVERSIBLE ELECTROCHEMICAL PROCESS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A micro gas sensor has been developed by our group for the detection of organo-phosphate vapors using an aqueous oxime solution. The analyte diffuses from the high flow rate gas stream through a porous membrane to the low flow rate aqueous phase. It reacts with the oxime PBO (1-Phenyl-1,2,3,-butanetrione 2-oxime) to produce cyanide ions, which are then detected electrochemically from the change in solution potential. Previous work on this oxime based electrochemistry indicated that the optimal buffer pH for the aqueous solution was approximately 10. A basic environment is needed for the oxime anion to form and the detection reaction to take place. At this specific pH, the potential response of the sensor to an analyte (such as acetic anhydride) is maximized. However, sensor response slowly decreases as the aqueous oxime solution ages, by as much as 80% in first 24 hours. The decrease in sensor response is due to cyanide which is produced during the oxime degradation process, as evidenced by the cyanide selective electrode. Solid phase micro-extraction carried out on the oxime solution found several other possible degradation products, including acetic acid, N-hydroxy benzamide, benzoic acid, benzoyl cyanide, 1-Phenyl 1,3-butadione, 2-isonitrosoacetophenone and an imine derived from the oxime. It was concluded that degradation occurred through nucleophilic attack by a hydroxide or oxime anion to produce cyanide, as well as a nitrogen atom rearrangement similar to Beckmann rearrangement. The stability of the oxime in organic solvents is most likely due to the lack of water, and specifically hydroxide ions. The reaction between oxime and organo-phosphate to produce cyanide ions requires hydroxide ions, and therefore pure organic solvents are not compatible with the current micro-sensor electrochemistry. By combining a concentrated organic oxime solution with the basic aqueous buffer just prior to being used in the detection process, oxime degradation can be avoided while preserving the original electrochemical detection scheme. Based on beaker cell experiments with selective cyanide sensitive electrodes, ethanol was chosen as the best organic solvent due to its stabilizing effect on the oxime, minimal interference with the aqueous electrochemistry, and compatibility with the current microsensor material (PMMA). Further studies showed that ethanol had a small effect on micro-sensor performance by reducing the rate of cyanide production and decreasing the overall response time. To avoid incomplete mixing of the aqueous and organic solutions, they were pre-mixed externally at a 10:1 ratio, respectively. To adapt the microsensor design to allow for mixing to take place within the device, a small serpentine channel component was fabricated with the same dimensions and material as the original sensor. This allowed for seamless integration of the microsensor with the serpentine mixing channel. Mixing in the serpentine microchannel takes place via diffusion. Both detector potential response and diffusional mixing improve with increased liquid residence time, and thus decreased liquid flowrate. Micromixer performance was studies at a 10:1 aqueous buffer to organic solution flow rate ratio, for a total rate of 5.5 μL/min. It was found that the sensor response utilizing the integrated micromixer was nearly identical to the response when the solutions were premixed and fed at the same rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rapid, sensitive and selective detection of chemical hazards and biological pathogens has shown growing importance in the fields of homeland security, public safety and personal health. In the past two decades, efforts have been focusing on performing point-of-care chemical and biological detections using miniaturized biosensors. These sensors convert target molecule binding events into measurable electrical signals for quantifying target molecule concentration. However, the low receptor density and the use of complex surface chemistry in receptors immobilization on transducers are common bottlenecks in the current biosensor development, adding to the cost, complexity and time. This dissertation presents the development of selective macromolecular Tobacco mosaic virus-like particle (TMV VLP) biosensing receptor, and the microsystem integration of VLPs in microfabricated electrochemical biosensors for rapid and performance-enhanced chemical and biological sensing. Two constructs of VLPs carrying different receptor peptides targeting at 2,4,6-trinitrotoluene (TNT) explosive or anti-FLAG antibody are successfully bioengineered. The VLP-based TNT electrochemical sensor utilizes unique diffusion modulation method enabled by biological binding between target TNT and receptor VLP. The method avoids the influence from any interfering species and environmental background signals, making it extremely suitable for directly quantifying the TNT level in a sample. It is also a rapid method that does not need any sensor surface functionalization process. For antibody sensing, the VLPs carrying both antibody binding peptides and cysteine residues are assembled onto the gold electrodes of an impedance microsensor. With two-phase immunoassays, the VLP-based impedance sensor is able to quantify antibody concentrations down to 9.1 ng/mL. A capillary microfluidics and impedance sensor integrated microsystem is developed to further accelerate the process of VLP assembly on sensors and improve the sensitivity. Open channel capillary micropumps and stop-valves facilitate localized and evaporation-assisted VLP assembly on sensor electrodes within 6 minutes. The VLP-functionalized impedance sensor is capable of label-free sensing of antibodies with the detection limit of 8.8 ng/mL within 5 minutes after sensor functionalization, demonstrating great potential of VLP-based sensors for rapid and on-demand chemical and biological sensing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2D materials have attracted tremendous attention due to their unique physical and chemical properties since the discovery of graphene. Despite these intrinsic properties, various modification methods have been applied to 2D materials that yield even more exciting results. Among all modification methods, the intercalation of 2D materials provides the highest possible doping and/or phase change to the pristine 2D materials. This doping effect highly modifies 2D materials, with extraordinary electrical transport as well as optical, thermal, magnetic, and catalytic properties, which are advantageous for optoelectronics, superconductors, thermoelectronics, catalysis and energy storage applications. To study the property changes of 2D materials, we designed and built a planar nanobattery that allows electrochemical ion intercalation in 2D materials. More importantly, this planar nanobattery enables characterization of electrical, optical and structural properties of 2D materials in situ and real time upon ion intercalation. With this device, we successfully intercalated Li-ions into few layer graphene (FLG) and ultrathin graphite, heavily dopes the graphene to 0.6 x 10^15 /cm2, which simultaneously increased its conductivity and transmittance in the visible range. The intercalated LiC6 single crystallite achieved extraordinary optoelectronic properties, in which an eight-layered Li intercalated FLG achieved transmittance of 91.7% (at 550 nm) and sheet resistance of 3 ohm/sq. We extend the research to obtain scalable, printable graphene based transparent conductors with ion intercalation. Surfactant free, printed reduced graphene oxide transparent conductor thin film with Na-ion intercalation is obtained with transmittance of 79% and sheet resistance of 300 ohm/sq (at 550 nm). The figure of merit is calculated as the best pure rGO based transparent conductors. We further improved the tunability of the reduced graphene oxide film by using two layers of CNT films to sandwich it. The tunable range of rGO film is demonstrated from 0.9 um to 10 um in wavelength. Other ions such as K-ion is also studied of its intercalation chemistry and optical properties in graphitic materials. We also used the in situ characterization tools to understand the fundamental properties and improve the performance of battery electrode materials. We investigated the Na-ion interaction with rGO by in situ Transmission electron microscopy (TEM). For the first time, we observed reversible Na metal cluster (with diameter larger than 10 nm) deposition on rGO surface, which we evidenced with atom-resolved HRTEM image of Na metal and electron diffraction pattern. This discovery leads to a porous reduced graphene oxide sodium ion battery anode with record high reversible specific capacity around 450 mAh/g at 25mA/g, a high rate performance of 200 mAh/g at 250 mA/g, and stable cycling performance up to 750 cycles. In addition, direct observation of irreversible formation of Na2O on rGO unveils the origin of commonly observed low 1st Columbic Efficiency of rGO containing electrodes. Another example for in situ characterization for battery electrode is using the planar nanobattery for 2D MoS2 crystallite. Planar nanobattery allows the intrinsic electrical conductivity measurement with single crystalline 2D battery electrode upon ion intercalation and deintercalation process, which is lacking in conventional battery characterization techniques. We discovered that with a “rapid-charging” process at the first cycle, the lithiated MoS2 undergoes a drastic resistance decrease, which in a regular lithiation process, the resistance always increases after lithiation at its final stage. This discovery leads to a 2- fold increase in specific capacity with with rapid first lithiated MoS2 composite electrode material, compare with the regular first lithiated MoS2 composite electrode material, at current density of 250 mA/g.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High voltage electrophoretic deposition (HVEPD) has been developed as a novel technique to obtain vertically aligned forests of one-dimensional nanomaterials for efficient energy storage. The ability to control and manipulate nanomaterials is critical for their effective usage in a variety of applications. Oriented structures of one-dimensional nanomaterials provide a unique opportunity to take full advantage of their excellent mechanical and electrochemical properties. However, it is still a significant challenge to obtain such oriented structures with great process flexibility, ease of processing under mild conditions and the capability to scale up, especially in context of efficient device fabrication and system packaging. This work presents HVEPD as a simple, versatile and generic technique to obtain vertically aligned forests of different one-dimensional nanomaterials on flexible, transparent and scalable substrates. Improvements on material chemistry and reduction of contact resistance have enabled the fabrication of high power supercapacitor electrodes using the HVEPD method. The investigations have also paved the way for further enhancements of performance by employing hybrid material systems and AC/DC pulsed deposition. Multi-walled carbon nanotubes (MWCNTs) were used as the starting material to demonstrate the HVEPD technique. A comprehensive study of the key parameters was conducted to better understand the working mechanism of the HVEPD process. It has been confirmed that HVEPD was enabled by three key factors: high deposition voltage for alignment, low dispersion concentration to avoid aggregation and simultaneous formation of holding layer by electrodeposition for reinforcement of nanoforests. A set of suitable parameters were found to obtain vertically aligned forests of MWCNTs. Compared with their randomly oriented counterparts, the aligned MWCNT forests showed better electrochemical performance, lower electrical resistance and a capability to achieve superhydrophpbicity, indicating their potential in a broad range of applications. The versatile and generic nature of the HVEPD process has been demonstrated by achieving deposition on flexible and transparent substrates, as well as aligned forests of manganese dioxide (MnO2) nanorods. A continuous roll-printing HVEPD approach was then developed to obtain aligned MWCNT forest with low contact resistance on large, flexible substrates. Such large-scale electrodes showed no deterioration in electrochemical performance and paved the way for practical device fabrication. The effect of a holding layer on the contact resistance between aligned MWCNT forests and the substrate was studied to improve electrochemical performance of such electrodes. It was found that a suitable precursor salt like nickel chloride could be used to achieve a conductive holding layer which helped to significantly reduce the contact resistance. This in turn enhanced the electrochemical performance of the electrodes. High-power scalable redox capacitors were then prepared using HVEPD. Very high power/energy densities and excellent cyclability have been achieved by synergistically combining hydrothermally synthesized, highly crystalline α-MnO2 nanorods, vertically aligned forests and reduced contact resistance. To further improve the performance, hybrid electrodes have been prepared in the form of vertically aligned forest of MWCNTs with branches of α-MnO2 nanorods on them. Large- scale electrodes with such hybrid structures were manufactured using continuous HVEPD and characterized, showing further improved power and energy densities. The alignment quality and density of MWCNT forests were also improved by using an AC/DC pulsed deposition technique. In this case, AC voltage was first used to align the MWCNTs, followed by immediate DC voltage to deposit the aligned MWCNTs along with the conductive holding layer. Decoupling of alignment from deposition was proven to result in better alignment quality and higher electrochemical performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical conversion is a sustainable way for the production of added-value products, operating in mild conditions, using in-situ generated hydrogen/oxygen by water and avoiding the use of high H2/O2 pressures. The aim of this work is to investigate the electrocatalytic conversion of 5-hydroxymetilfurfural (HMF) and D-glucose, in alkaline media, using metallic open-cell foams based-catalysts. The electrochemical hydrogenation of HMF to 2,5-bis(hydroxymethyl)furan (BHMF) was performed using nanostructured Ag, deposited by galvanic displacement (GD) or electrodeposition (ED), on Cu foam, obtaining AgCu bimetallic nanoparticles (ED) or dendrites (GD) which enhanced electroactive surface area, charge and mass transfer, than bare foams. In diluted 0.02M HMF solutions, Ag/Cu samples selectively produce BHMF; the large surface area enhanced the productivity, compared to their 2D counterparts. Furthermore, at more concentrated solutions (0.05 – 0.10M) a gradually decrease of selectivity is observed. The performances of the electrodes is stable during the catalytic tests but a Cu-enrichment of particles occurred. The performances of Ni foam-based catalysts, obtained by calcination of Ni foam or by electrodeposition of Ni-hydroxide/Ni and Ni particle/Ni, were firstly investigated for the selective electrochemical oxidation of D-glucose toward gluconic acid (GO) and glucaric acid (GA). Then, the calcined catalyst was chosen to study the influence of the reaction conditions on the reaction mechanism. The GO and GA selectivities increase with the charge passed, while the formation of by-products from C-C cleavage/retro-aldol process is maximum at low charge. The fructose obtained from glucose isomerization favours the formation of by-products. The best glucose/NaOH ratio is between 0.5 and 0.1: higher values suppress the OER, while lower values favour the formation of low molecular weight products. The increases of the potential enhance the GO selectivity, nevertheless higher GA selectivity is observed at 0.6 – 0.7V vs SCE, confirmed by catalytic test performed in gluconate (30-35% GA selectivity).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polychlorinated biphenyls (PCBs) are chemicals largely employed in the industry, banned at the end of the last century yet still persistent in the environment. Bioremediation, namely exploiting bacteria to reduce PCBs’ toxicity, is receiving attention as a promising approach to remediate polluted site in situ. Natural bioremediation is constrained by several factors as the low amount of the required growth substrates (e.g. electron donors, oxygen) and the scarcity of bacteria able to metabolize PCBs. In this regard, use of biodegradable polymers or applied potentials have been demonstrated effective in priming bioremediation of freshwater environments (e.g. river sediments) polluted by chlorinated solvents or PCBs. Yet, little is known regarding the application in marine sediments, where the abundance of anaerobic competitors (i.e. sulfate reducing bacteria) and the different sediment’s features might affect the bioremediation. In this study, polyhydroxyalkanoates (PHAs) and Microbial Electrochemical Technologies (METs) were applied for the first time to prime bioremediation of PCBs polluted marine sediments. The influence of PHAs was studied on the main anaerobic metabolisms and on the microbial community of the heavily polluted sediments coming from the Pialassa della Baiona, a micro-tidal coastal lagoon in Ravenna, and from Mar Piccolo, the marine basin aside Taranto. The impact of METs was deepened by monitoring the physical-chemical parameters and the main anaerobic metabolisms of the sediments coming from Ravenna. The effectiveness of biostimulating with PHAs depended on the features of the treated site, possibly due to the availability of the amendments and to the competition of the indigenous microbial communities. The bioelectrochemical stimulation inhibited the bioremediation process. In both cases, the presence of an inoculated bacterial community was required to perform bioremediation. The collected results led to a comprehensive analysis of the available literature, questioning what could be the further approaches for an effective in situ bioremediation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most important scientific and environmental issues is reducing global dependence on fossil sources and one of the solutions is to use biomass as feedstock. In particular, the use of lignocellulosic biomass to obtain molecules with considerable commercial importance is gaining more and more interest. Lignin, the most recalcitrant part of lignocellulosic biomass, is a valuable source of sustainable and renewable aromatic molecules, currently produced from petrochemical processes. Vanillin, one of the most important aromatic aldehydes on an industrial level, can be obtained through catalytic lignin oxidation. An alternative to the conventional catalytic oxidation process is the electro-catalytic process, which can be carried out at ambient temperature and pressure, using water as solvent, and it can be considered as a renewable energy storage. In this thesis, the electrocatalytic oxidation of Kraft and Dealkaline lignin in NaOH was investigated over Ni foam catalysts. The effect of the reaction parameters (i.e. time, applied potential, lignin concentration, NaOH concentration, and temperature) on the yields of vanillin and other valuable products was evaluated. After the screening of the reaction conditions, a systematic study of the contribution of the homogeneous reaction (lignin depolymerization due to the basic solvent) to the yield of the product was accomplished. Finally, considering the obtained results, an alternative reaction procedure was proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochemical hydrogen loading is a technique used to produce and study the hydrogenation in metals starting from a liquid solution containing water. It is a possible alternative to another, well-established technique which loads hydrogen starting from its gas phase. In this work, the electrochemical method is used to understand the fundamental thermodynamics of hydrogen loading in constraint systems such as thin films on substrates, and possibly distinguish the role of interfaces, stresses and microstructure during the hydrogenation process. The systems under study are thin films of Pd, Mg/Pd, and Ti/Mg multilayers. Possible future technological applications may be in the field of hydrogen storage and hydrogen sensors. Towards the end, the experimental setup is modified by introducing an automatic relay. This change leads to improvements in the data analysis and in the attainable information on the kinetics of the systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Response surface methodology based on Box-Behnken (BBD) design was successfully applied to the optimization in the operating conditions of the electrochemical oxidation of sanitary landfill leachate aimed for making this method feasible for scale up. Landfill leachate was treated in continuous batch-recirculation system, where a dimensional stable anode (DSA(©)) coated with Ti/TiO2 and RuO2 film oxide were used. The effects of three variables, current density (milliampere per square centimeter), time of treatment (minutes), and supporting electrolyte dosage (moles per liter) upon the total organic carbon removal were evaluated. Optimized conditions were obtained for the highest desirability at 244.11 mA/cm(2), 41.78 min, and 0.07 mol/L of NaCl and 242.84 mA/cm(2), 37.07 min, and 0.07 mol/L of Na2SO4. Under the optimal conditions, 54.99 % of chemical oxygen demand (COD) and 71.07 ammonia nitrogen (NH3-N) removal was achieved with NaCl and 45.50 of COD and 62.13 NH3-N with Na2SO4. A new kinetic model predicted obtained from the relation between BBD and the kinetic model was suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systemic lupus erythematosus is an autoimmune disease that causes many psychological repercussions that have been studied through qualitative research. These are considered relevant, since they reveal the amplitude experienced by patients. Given this importance, this study aims to map the qualitative production in this theme, derived from studies of experiences of adult patients of both genders and that had used as a tool a semi-structured interview and/or field observations, and had made use of a sampling by a saturation criterion to determine the number of participants in each study. The survey was conducted in Pubmed, Lilacs, Psycinfo e Cochrane databases, searching productions in English and Portuguese idioms published between January 2005 and June 2012. The 19 revised papers that have dealt with patients in the acute phase of the disease showed themes that were categorized into eight topics that contemplated the experienced process at various stages, from the onset of the disease, extending through the knowledge of the diagnosis and the understanding of the manifestations of the disease, drug treatment and general care, evolution and prognosis. The collected papers also point to the difficulty of understanding, of the patients, on what consists the remission phase, revealing also that this is a clinical stage underexplored by psychological studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

20

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MIPs are synthetic polymers that are used as biomimetic materials simulating the mechanism verified in natural entities such as antibodies and enzymes. Although MIPs have been successfully used as an outstanding tool for enhancing the selectivity or different analytical approaches, such as separation science and electrochemical and optical sensors, several parameters must be optimized during their synthesis. Therefore, the state-of-the-art of MIP production as well as the different polymerization methods are discussed. The potential selectivity of MIPs in the extraction and separation techniques focusing mainly on environmental, clinical and pharmaceutical samples as applications for analytical purposes is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: To investigate the facial symmetry of rats submitted to experimental mandibular condyle fracture and with protein undernutrition (8% of protein) by means of cephalometric measurements. METHODS: Forty-five adult Wistar rats were distributed in three groups: fracture group, submitted to condylar fracture with no changes in diet; undernourished fracture group, submitted to hypoproteic diet and condylar fracture; undernourished group, kept until the end of experiment, without condylar fracture. Displaced fractures of the right condyle were induced under general anesthesia. The specimens were submitted to axial radiographic incidence, and cephalometric mensurations were made using a computer system. The values obtained were subjected to statistical analyses among the groups and between the sides in each group. RESULTS: There was significative decrease of the values of serum proteins and albumin in the undernourished fracture group. There was deviation of the median line of the mandible relative to the median line of the maxilla, significative to undernutrition fracture group, as well as asymmetry of the maxilla and mandible, in special in the final period of experiment. CONCLUSION: The mandibular condyle fracture in rats with proteic undernutrition induced an asymmetry of the mandible, also leading to consequences in the maxilla.