954 resultados para INDUCED RESPIRATORY DEPRESSION
Resumo:
Abstract Introduction The regular practice of physical exercise has been associated with beneficial effects on various pulmonary conditions. We investigated the mechanisms involved in the protective effect of exercise in a model of lipopolysaccharide (LPS)-induced acute lung injury (ALI). Methods Mice were divided into four groups: Control (CTR), Exercise (Exe), LPS, and Exercise + LPS (Exe + LPS). Exercised mice were trained using low intensity daily exercise for five weeks. LPS and Exe + LPS mice received 200 µg of LPS intratracheally 48 hours after the last physical test. We measured exhaled nitric oxide (eNO); respiratory mechanics; neutrophil density in lung tissue; protein leakage; bronchoalveolar lavage fluid (BALF) cell counts; cytokine levels in BALF, plasma and lung tissue; antioxidant activity in lung tissue; and tissue expression of glucocorticoid receptors (Gre). Results LPS instillation resulted in increased eNO, neutrophils in BALF and tissue, pulmonary resistance and elastance, protein leakage, TNF-alpha in lung tissue, plasma levels of IL-6 and IL-10, and IL-1beta, IL-6 and KC levels in BALF compared to CTR (P ≤0.02). Aerobic exercise resulted in decreases in eNO levels, neutrophil density and TNF-alpha expression in lung tissue, pulmonary resistance and elastance, and increased the levels of IL-6, IL-10, superoxide dismutase (SOD-2) and Gre in lung tissue and IL-1beta in BALF compared to the LPS group (P ≤0.04). Conclusions Aerobic exercise plays important roles in protecting the lungs from the inflammatory effects of LPS-induced ALI. The effects of exercise are mainly mediated by the expression of anti-inflammatory cytokines and antioxidants, suggesting that exercise can modulate the inflammatory-anti-inflammatory and the oxidative-antioxidative balance in the early phase of ALI.
Resumo:
The first aims of this study were to demonstrate if mitochondrial biogenesis and senescence can be induced simultaneously in cell lines upon exposure to a genotoxic stress, and if the presence of mtDNA mutations which impair the functionality of respiratory complexes can influence the ability of a cell to activate senescence. The data obtained on the oncocytic model XTC.UC1 demonstrated that the presence of mitochondrial dysfunction is involved in the maintenance of a senescent phenotype induced by γ-rays treatment. The involvement of mTORC1 in the regulation of senescence has been shown in this cell line. On the other hand, in cells which do not present mitochondrial dysfunction it has been verified that genotoxic stress determines the activation of both mitochondrial biogenesis and senescence. Further studies are necessary in order to verify if mitochondrial biogenesis sustains the activation of senescence. The second aim of this thesis was to determine the involvement of mTORC1 in the regulation of PGC-1α expression, in order to verify what is the cause of the development of oncocytoma in patients affected by two hereditary cancer syndromes; Cowden and Birt-hogg-Dubé . The study of oncocytic tumors developed by patients affected by these syndromes suggested that the double heterozigosity of the two causative genes, PTEN and FLCN respectively, induce the activation of mTORC1 and therefore the activation of PGC-1α expression. On XTC.UC1 cell line, the most suitable in vitro model, experiments of complementation of PTEN and FLCN were conducted. To date, these results demonstrated that mTORC1 is not involved in the regulation of PGC-1α expression, and PTEN and FLCN seem to have opposite effect on PGC-1α expression.
Resumo:
Major depression belongs to the most serious and widespread psychiatric disorders in today’s society. There is a great need for the delineation of the underlying molecular mechanisms as well as for the identification of novel targets for its treatment. In this thesis, transgenic mice of the endocannabinoid and the corticotropin-releasing hormone (CRH) system were investigated to determine the putative role of these systems for depression-like phenotypes in mice. In the first part of the thesis, we found that the endocannabinoid system was prominently involved in a brain region-specific and temporally controlled manner in acute as well as in chronic stress processing. Genetic deletion in combination with pharmacological intervention revealed the importance of a fully functional endocannabinoid system for efficient neuroendocrine and behavioral stress coping. Accordingly, cannabinoid type 1 (CB1) receptor-deficient mice displayed several depression-like symptoms and molecular alterations, including “behavioral despair”, stress hormone hypersecretion and decreased glucocorticoid receptor and brain-derived neurotrophic factor expression in the hippocampus. However, the endocannabinoid system was dispensable for the efficacy of currently used antidepressant drugs. To facilitate future endocannabinoid research, a transgenic mouse was generated, which overexpressed the CB1 receptor protein fused to a fluorescent protein. In the second part of the thesis, conditional brain region-specific CRH overexpressing mice were evaluated as a model for pathological chronic CRH hyperactivation. Mutant mice showed aberrant neuroendocrine and behavioral stress coping and hyperarousal due to CRH-induced activation of the noradrenergic system in the brain. Mutant mice appeared to share similarities with naturally occurring endogenous CRH activation in wild-type mice and were sensitive to acute pharmacological blockade of CRH receptor type 1 (CRH-R1). Thus, CRH overexpressing mice serve as an ideal in vivo tool to evaluate the efficacy of novel CRH-R1 antagonists. Together, these findings highlight the potential of transgenic mice for the understanding of certain endo-phenotypes (isolated symptoms) of depression and their molecular correlates.
Resumo:
In dieser Arbeit wurden zytotoxische Effekte sowie die inflammatorische Reaktionen des distalen respiratorischen Traktes nach Nanopartikelexposition untersucht. Besondere Aufmerksamkeit lag auch auf der Untersuchung unterschiedlicher zellulärer Aufnahmewege von Nanopartikeln wie z.B. Clathrin- oder Caveolae-vermittelte Endozytose oder auch Clathrin- und Caveolae-unabhängige Endozytose (mit möglicher Beteiligung von Flotillinen). Drei unterschiedliche Nanopartikel wurden hierbei gewählt: amorphes Silica (aSNP), Organosiloxan (AmorSil) und Poly(ethyleneimin) (PEI). Alle unterschiedlichen Materialien gewinnen zunehmend an Interesse für biomedizinische Forschungsrichtungen (drug and gene delivery). Insbesondere finden aSNPs auch in der Industrie vermehrt Anwendung, und stellen somit ein ernstzunehmendes Gesundheitsrisiko dar. Dieser wird dadurch zu einem begehrten Angriffsziel für pharmazeutische Verabreichungen von Medikamenten über Nanopartikel als Vehikel aber bietet zugleich auch eine Angriffsfläche für gesundheitsschädliche Nanomaterialien. Aus diesem Grund sollten die gesundheitsschädigenden Risiken, sowie das Schicksal von zellulär aufgenommenen NPs sorgfältig untersucht werden. In vivo Studien an der alveolaren-kapillaren Barriere sind recht umständlich. Aus diesem Grund wurde in dieser Arbeit ein Kokulturmodel benutzt, dass die Alveolar-Kapillare Barrier in vivo nachstellt. Das Model besteht aus dem humanen Lungenepithelzelltyp (z.B. NCI H441) und einem humanen microvasculären Endothelzelltyp (z.B. ISO-HAS-1), die auf entgegengesetzten Seiten eines Transwell-Filters ausgesät werden und eine dichte Barriere ausbilden. Die NP Interaktion mit Zellen in Kokultur wurde mit denen in konventioneller Monokultur verglichen, in der Zellen 24h vor dem Experiment ausgesät werden. Diese Studie zeigt, dass nicht nur die polarisierte Eigenschaft der Zellen in Kokultur sondern auch die unmittelbare Nähe von Epithel und Endothelzelle ausschlaggebend für durch aSNPs verursachte Effekte ist. Im Hinblick auf inflammatorische Marker (sICAM, IL-6, IL8-Ausschüttung), reagiert die Kokultur auf aSNPs empfindlicher als die konventionelle Monokultur, wohingegen die Epithelzellen in der Kokultur auf zytotoxikologischer Ebene (LDH-Ausschüttung) unempfindlicher auf aSNPs reagierten als die Zellen in Monokultur. Aufnahmestudien haben gezeigt, dass die Epithelzellen in Kokultur entschieden weniger NPs aufnehmen. Somit zeigen die H441 in der Kokultur ähnliche epitheliale Eigenschaften einer schützenden Barriere, wie sie auch in vivo zu finden sind. Obwohl eine ausreichende Aufnahme von NPs in H441 in Kokultur erreicht werden konnte, konnte ein Transport von NPs durch die epitheliale Schicht und eine Aufnahme in die endotheliale Schicht mit den gewählten Inkubationszeiten nicht gezeigt werden. Eine Clathrin- oder Caveolae-vermittelte Endozytose von NPs konnte mittels Immunfluoreszenz weder in der Mono- noch in der Kokultur nachgewiesen werden. Jedoch zeigte sich eine Akkumulation von NPs in Flotillin-1 und-2 enthaltende Vesikel in Epithelzellen aus beiden Kultursystemen. Ergebnisse mit Flotillin-inhibierten (siRNA) Epithelzellen, zeigten eine deutlich geringere Aufnahme von aSNPs. Zudem zeigte sich eine eine reduzierte Viabilität (MTS) von aSNP-behandelten Zellen. Dies deutet auf eine Beteiligung von Flotillinen an unbekannten (Clathrin oder Caveolae -unabhängig) Endozytosemechanismen und (oder) endosomaler Speicherung. Zusammenfassend waren die Aufnahmemechanismen für alle untesuchten NPs in konventioneller Monokultur und Kokultur vergleichbar, obwohl sich die Barriereeigenschaften deutlich unterscheiden. Diese Arbeit zeigt deutlich, dass sich die Zellen in Kokultur anders verhalten. Die Zellen erreichen hierbei einen höheren Differenzierungsgrad und eine Zellkommunikation mit anderen relevanten Zelltypen wird ermöglicht. Durch das Einbringen eines dritten relevanten Zelltyps in die Kokultur, des Alveolarmakrophagen (Zelllinie THP-1), welcher die erste Verteidigungsfront im Alveolus bildet, wird diese Aussage weiter bekräftigt. Erste Versuche haben gezeigt, dass die Triplekultur bezüglich ihrer Barriereeigenschaften und IL-8-Ausschüttung sensitiver auf z.B. TNF- oder LPS-Stimulation reagiert als die Kokultur. Verglichen mit konventionellen Monokulturen imitieren gut ausgebildete, multizelluräre Kokulturmodelle viel präziser das zelluläre Zusammenspiel im Körper. Darum liefern Nanopartikelinteraktionen mit dem in vitro-Triplekulturmodel aufschlussreichere Ergebnisse bezüglich umweltbedingter oder pharmazeutischer NP-Exposition in der distalen Lung als es uns bisher möglich war.
Resumo:
High arterial partial oxygen pressure (Pao(2)) oscillations within the respiratory cycle were described recently in experimental acute lung injury. This phenomenon has been related to cyclic recruitment of atelectasis and varying pulmonary shunt fractions. Noninvasive detection of Spo(2) (oxygen saturation measured by pulse oximetry) as an indicator of cyclic collapse of atelectasis, instead of recording Pao(2) oscillations, could be of clinical interest in critical care. Spo(2) oscillations were recorded continuously in three different cases of lung damage to demonstrate the technical feasibility of this approach. To deduce Pao(2) from Spo(2), a mathematical model of the hemoglobin dissociation curve including left and right shifts was derived from the literature and adapted to the dynamic changes of oxygenation. Calculated Pao(2) amplitudes (derived from Spo(2) measurements) were compared to simultaneously measured fast changes of Pao(2), using a current standard method (fluorescence quenching of ruthenium). Peripheral hemoglobin saturation was capable to capture changes of Spo(2) within each respiratory cycle. For the first time, Spo(2) oscillations due to cyclic recruitment of atelectasis within a respiratory cycle were determined by photoplethysmography, a technology that can be readily applied noninvasively in clinical routine. A mathematic model to calculate the respective Pao(2) changes was developed and its applicability tested.
Resumo:
Although extensive indirect evidence exists to suggest that the central dopaminergic system plays a significant role in the modulation of arousal, the functional effect of the dopaminergic influence on the regulation of the sleep-wake cycle remains unclear. Thirteen healthy volunteers and 15 unmedicated subjects with a history of major depressive disorder underwent catecholamine depletion (CD) using oral alpha-methyl-para-tyrosine in a randomized, placebo-controlled, double-blind, crossover study. The main outcome measures in both sessions were sleepiness (Stanford-Sleepiness-Scale), cerebral glucose metabolism (positron emission tomography), and serum prolactin concentration. CD consistently induced clinically relevant sleepiness in both groups. The CD-induced prolactin increase significantly correlated with CD-induced sleepiness but not with CD-induced mood and anxiety symptoms. CD-induced sleepiness correlated with CD-induced increases in metabolism in the medial and orbital frontal cortex, bilateral superior temporal cortex, left insula, cingulate motor area and in the vicinity of the periaqueductal gray. This study suggests that the association between dopamine depletion and sleepiness is independent of the brain reward system and the risk for depression. The visceromotor system, the cingulate motor area, the periaqueductal gray and the caudal hypothalamus may mediate the impact of the dopaminergic system on regulation of wakefulness and sleep.
Cellular mechanisms of burst firing-mediated long-term depression in rat neocortical pyramidal cells
Resumo:
During wakefulness and sleep, neurons in the neocortex emit action potentials tonically or in rhythmic bursts, respectively. However, the role of synchronized discharge patterns is largely unknown. We have recently shown that pairings of excitatory postsynaptic potentials (EPSPs) and action potential bursts or single spikes lead to long-term depression (burst-LTD) or long-term potentiation, respectively. In this study, we elucidate the cellular mechanisms of burst-LTD and characterize its functional properties. Whole-cell patch-clamp recordings were obtained from layer V pyramidal cells in somatosensory cortex of juvenile rats in vitro and composite EPSPs and EPSCs were evoked extracellularly in layers II/III. Repetitive burst-pairings led to a long-lasting depression of EPSPs and EPSCs that was blocked by inhibitors of metabotropic glutamate group 1 receptors, phospholipase C, protein kinase C (PKC) and calcium release from the endoplasmic reticulum, and that required an intact machinery for endocytosis. Thus, burst-LTD is induced via a Ca2+- and phosphatidylinositol-dependent activation of PKC and expressed through phosphorylation-triggered endocytosis of AMPA receptors. Functionally, burst-LTD is inversely related to EPSP size and bursts dominate single spikes in determining the sign of synaptic plasticity. Thus burst-firing constitutes a signal by which coincident synaptic inputs are proportionally downsized. Overall, our data thus suggest a mechanism by which synaptic weights can be reconfigured during non-rapid eye movement sleep.
Resumo:
OBJECTIVE: To investigate effects of isoflurane at approximately the minimum alveolar concentration (MAC) on the nociceptive withdrawal reflex (NWR) of the forelimb of ponies as a method for quantifying anesthetic potency. ANIMALS: 7 healthy adult Shetland ponies. PROCEDURE: Individual MAC (iMAC) for isoflurane was determined for each pony. Then, effects of isoflurane administered at 0.85, 0.95, and 1.05 iMAC on the NWR were assessed. At each concentration, the NWR threshold was defined electromyographically for the common digital extensor and deltoid muscles by stimulating the digital nerve; additional electrical stimulations (3, 5, 10, 20, 30, and 40 mA) were delivered, and the evoked activity was recorded and analyzed. After the end of anesthesia, the NWR threshold was assessed in standing ponies. RESULTS: Mean +/- SD MAC of isoflurane was 1.0 +/- 0.2%. The NWR thresholds for both muscles increased significantly in a concentration-dependent manner during anesthesia, whereas they decreased in awake ponies. Significantly higher thresholds were found for the deltoid muscle, compared with thresholds for the common digital extensor muscle, in anesthetized ponies. At each iMAC tested, amplitudes of the reflex responses from both muscles increased as stimulus intensities increased from 3 to 40 mA. A concentration-dependent depression of evoked reflexes with reduction in slopes of the stimulus-response functions was detected. CONCLUSIONS AND CLINICAL RELEVANCE: Anesthetic-induced changes in sensory-motor processing in ponies anesthetized with isoflurane at concentrations of approximately 1.0 MAC can be detected by assessment of NWR. This method will permit comparison of effects of inhaled anesthetics or anesthetic combinations on spinal processing in equids.
Resumo:
BACKGROUND: Petasin (Ze 339) was recently introduced on the market as a potent herbal antiallergic drug for treatment of respiratory allergies such as hay fever. Few clinical studies have been performed so far addressing the clinical effectiveness of Ze 339. OBJECTIVE: To evaluate the antiallergic properties of Ze 339 using skin prick tests with different stimuli, such as codeine, histamine, methacholine, and a relevant inhalant allergen. METHODS: A randomized, double-blind, placebo-controlled study was performed in which Ze 339 was compared to acrivastine, a short-acting antihistamine, in 8 patients with respiratory allergy and in 10 nonatopic, healthy volunteers. Antiallergic activity of Ze 339 was determined by analyzing inhibitory potency in skin prick tests with codeine, histamine, methacholine, and an inhalant allergen. Wheal-and-flare reactions were assessed 90 minutes after a double dose of Ze 339, acrivastine, or placebo. An interval of at least 3 days was left between the skin tests. RESULTS: Acrivastine was identified as the only substance that significantly inhibited skin test reactivity to all solutions analyzed in all study subjects. In contrast, no significant inhibition could be demonstrated for Ze 339 with any test solution. Moreover, the results of Ze 339 did not differ significantly from placebo. CONCLUSIONS: In this study we found no antiallergic, particularly antihistaminic, effect of Ze 339 in skin tests using a variety of stimuli often used to evaluate immediate skin test reactivity. The mechanism by which Ze 339 is effective in the treatment of seasonal allergic rhinitis still needs to be elucidated.
Resumo:
CD40 and its ligand regulate pleiotropic biological responses, including cell proliferation, differentiation, and apoptosis. In many inflammatory lung diseases, tissue damage by environmental or endogenous oxidants plays a major role in disease pathogenesis. As the epithelial barrier is a major target for these oxidants, we postulated that CD40, the expression of which is increased in asthma, plays a role in the regulation of apoptosis of bronchial epithelial cells exposed to oxidants. Using 16HBE 14o- cells exposed to oxidant stress, we found that ligation of CD40 (induced by G28-5 monoclonal antibodies) enhanced cell survival and increased the number of cells in G2/M (interphase between DNA synthesis and mitosis) of the cell cycle. This was associated with NF-kappaB and activator protein-1 activation and increased expression of the inhibitor of apoptosis, c-IAP1. However, oxidant stress-induced apoptosis was found to be caspase- and calpain-independent implicating CD40 ligation as a regulator of caspase-independent cell death. This was confirmed by the demonstration that CD40 ligation prevented mitochondrial release and nuclear translocation of apoptosis inducing factor. In conclusion, we demonstrate a novel role for CD40 as a regulator of epithelial cell survival against oxidant stress. Furthermore, we have identified, for the first time, an endogenous inhibitory pathway of caspase-independent cell death.
Resumo:
OBJECTIVE: To evaluate pulmonary and cardiovascular effects of a recruitment maneuver (RM) combined with positive end-expiratory pressure (PEEP) during total intravenous anesthesia in ponies. ANIMALS: 6 healthy adult Shetland ponies. PROCEDURE: After premedication with detomidine (10 microg/kg, IV), anesthesia was induced with climazolam (0.06 mg/kg, IV) and ketamine (2.2 mg/kg, IV) and maintained with a constant rate infusion of detomidine (0.024 mg/kg/h), climazolam (0.036 mg/kg/h), and ketamine (2.4 mg/kg/h). The RM was preceded by an incremental PEEP titration and followed by a decremental PEEP titration, both at a constant airway pressure difference (deltaP) of 20 cm H2O. The RM consisted of a stepwise increase in deltaP by 25, 30, and 35 cm H2O obtained by increasing peak inspiratory pressure (PIP) to 45, 50, and 55 cm H2O, while maintaining PEEP at 20 cm H2O. Hemodynamic and pulmonary variables were analyzed at every step of the PEEP titration-RM. RESULTS: During the PEEP titration-RM, there was a significant increase in PaO 2 (+12%), dynamic compliance (+ 62%), and heart rate (+17%) and a decrease in shunt (-19%) and mean arterial blood pressure (-21%) was recorded. Cardiac output remained stable. CONCLUSIONS AND CLINICAL RELEVANCE: Although baseline oxygenation was high, Pa(O2) and dynamic compliance further increased during the RM. Despite the use of high PIP and PEEP and a high tidal volume, limited cardiovascular compromise was detected. A PEEP titration-RM may be used to improve oxygenation in anesthetized ponies. During stable hemodynamic conditions, PEEP titration-RM can be performed with acceptable adverse cardiovascular effects.
Resumo:
Motion-induced blindness (MIB) occurs when target stimuli are presented together with a moving distractor pattern. Most observers experience the targets disappearing and reappearing repeatedly for periods of up to several seconds. MIB can be viewed as a striking marker for the organization of cognitive functioning. In the present study, MIB rates and durations were assessed in 34 schizophrenia-spectrum disorder patients and matched controls. The results showed that positive symptoms and excitement enhanced MIB, whereas depression and negative symptoms attenuated the illusion. MIB was more frequently found in normal subjects. The results remained consistent after adjusting for reaction time and error rates. Hence, MIB may provide a valid and reliable measure of cognitive organization in schizophrenia.
Resumo:
We previously showed in dissociated cultures of fetal rat spinal cord that disinhibition-induced bursting is based on intrinsic spiking, network recruitment, and a network refractory period after the bursts. A persistent sodium current (I(NaP)) underlies intrinsic spiking, which, by recurrent excitation, generates the bursting activity. Although full blockade of I(NaP) with riluzole disrupts such bursting, the present study shows that partial blockade of I(NaP) with low doses of riluzole maintains bursting activity with unchanged burst rate and burst duration. More important, low doses of riluzole turned bursts composed of persistent activity into bursts composed of oscillatory activity at around 5 Hz. In a search for the mechanisms underlying the generation of such intraburst oscillations, we found that activity-dependent synaptic depression was not changed with low doses of riluzole. On the other hand, low doses of riluzole strongly increased spike-frequency adaptation and led to early depolarization block when bursts were simulated by injecting long current pulses into single neurons in the absence of fast synaptic transmission. Phenytoin is another I(NaP) blocker. When applied in doses that reduced intrinsic activity by 80-90%, as did low doses of riluzole, it had no effect either on spike-frequency adaptation or on depolarization block. Nor did phenytoin induce intraburst oscillations after disinhibition. A theoretical model incorporating a depolarization block mechanism could reproduce the generation of intraburst oscillations at the network level. From these findings we conclude that riluzole-induced intraburst oscillations are a network-driven phenomenon whose major accommodation mechanism is depolarization block arising from strong sodium channel inactivation.
Resumo:
INTRODUCTION: Inhaled nitric oxide (INO) allows selective pulmonary vasodilation in acute respiratory distress syndrome and improves PaO2 by redistribution of pulmonary blood flow towards better ventilated parenchyma. One-third of patients are nonresponders to INO, however, and it is difficult to predict who will respond. The aim of the present study was to identify, within a panel of inflammatory mediators released during endotoxin-induced lung injury, specific mediators that are associated with a PaO2 response to INO. METHODS: After animal ethics committee approval, pigs were anesthetized and exposed to 2 hours of endotoxin infusion. Levels of cytokines, prostanoid, leucotriene and endothelin-1 (ET-1) were sampled prior to endotoxin exposure and hourly thereafter. All animals were exposed to 40 ppm INO: 28 animals were exposed at either 4 hours or 6 hours and a subgroup of nine animals was exposed both at 4 hours and 6 hours after onset of endotoxin infusion. RESULTS: Based on the response to INO, the animals were retrospectively placed into a responder group (increase in PaO2 > or = 20%) or a nonresponder group. All mediators increased with endotoxin infusion although no significant differences were seen between responders and nonresponders. There was a mean difference in ET-1, however, with lower levels in the nonresponder group than in the responder group, 0.1 pg/ml versus 3.0 pg/ml. Moreover, five animals in the group exposed twice to INO switched from responder to nonresponder and had decreased ET-1 levels (3.0 (2.5 to 7.5) pg/ml versus 0.1 (0.1 to 2.1) pg/ml, P < 0.05). The pulmonary artery pressure and ET-1 level were higher in future responders to INO. CONCLUSIONS: ET-1 may therefore be involved in mediating the response to INO.