874 resultados para IMMISCIBILITY LOOP
Resumo:
Lanthanide Eu3+ and Tb3+ ions have been widely used in luminescent resonance energy transfer (LRET) for bioassays to study metal binding microenvironments. We report here that Eu3+ or Tb3+ can increase the binding affinity of antitumor antibiotic drug agent, 7-amino actinomycin D (7AACTD), binding to 5'-GT/TG-5' or 5'-GA/AG-5' mismatched stem region of the single-stranded hairpin DNA. Further studies indicate that the effect of Eu3+ or Tb3+ on 7AACTD binding is related to DNA loop sequence. Our results will provide new insights into how metal ions can enhance antitumor agents binding to their targets.
Resumo:
A vertical 2-D water-mud numerical model is developed for estimating the rate of mud mass transport under wave action. A nonlinear semi-empirical rheology model featured by remarkable hysteresis loops in the relationships of the shear stress versus both the shear strain and the rate of shear strain of mud is applied to this water mud model. A logarithmic grid in the vertical direction is employed for numerical treatment, which increases the resolution of the flow in the neighborhood of both sides of the interface. Model verifications are given through comparisons between the calculated and the measured mud mass transport velocities as well as wave height changes. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Using the LAMP method, a highly specific and sensitive detection system for genetically modified soybean (Roundup Ready) was designed. In this detection system, a set of four primers was designed by targeting the exogenous 35S epsps gene. Target DNA was amplified and visualized on agarose gel within 45 min under isothermal conditions at 65 degrees C. Without gel electrophoresis, the LAMP amplicon was visualized directly in the reaction tube by the addition of SYBR Green I for naked-eye inspection. The detection sensitivity of LAMP was 10-fold higher than the nested PCR established in our laboratory. Moreover, the LAMP method was much quicker, taking only 70 min, as compared with 300 min for nested PCR to complete the analysis of the GM soybean. Compared with traditional PCR approaches, the LAMP procedure is faster and more sensitive, and there is no need for a special PCR machine or electrophoresis equipment. Hence, this method can be a very useful tool for GMO detection and is particularly convenient for fast screening.
Resumo:
牦牛的起源与属级分类学地位至今仍然存在一定的争议.我们测定了家养牦牛和野生牦牛线粒体控制区(D-loop)序列,并以此构建牦牛和牛属、野牛属、水牛属以及非洲水牛属相关种的系统发育树.研究结果表明线粒体D-loop区与Cyt b基因序列在构建牛族的系统发育具有同样重要的价值.系统发育关系显示野牛属的灭绝种草原野牛与现存种美洲野牛先聚合为一单系群,然后再和牦牛形成一单系分支,表明牦牛与野牛属的草原野牛、美洲野牛亲缘关系最近,具有最近的共同祖先,而与牛属的其它亚洲物种亲缘关系较远.因此,本研究不支持将牦牛独立为牦牛属--Poephagus,牛属与野牛属在分类上也应合并为一个属.基于上述研究结果和化石证据,我们进一步对牦牛起源的历史背景进行了讨论,认为牦牛与野牛属的分化是由于第四纪气候变化在欧亚大陆发生的,野牛通过白令陆桥进入北美;冰期结束后,由于欧亚大陆其它地区温度升高,牦牛只能局限分布在较为寒冷的青藏高原;而野牛属在北美先后分化为草原野牛和美洲野牛,前者可能是后者的直接祖先.
Resumo:
Huelse, M., Wischmann, S., Manoonpong, P., Twickel, A.v., Pasemann, F.: Dynamical Systems in the Sensorimotor Loop: On the Interrelation Between Internal and External Mechanisms of Evolved Robot Behavior. In: M. Lungarella, F. Iida, J. Bongard, R. Pfeifer (Eds.) 50 Years of Artificial Intelligence, LNCS 4850, Springer, 186 - 195, 2007.
Resumo:
A method to solve the stationary state probability is presented for the first-order bang-bang phase-locked loop (BBPLL) with nonzero loop delay. This is based on a delayed Markov chain model and a state How diagram for tracing the state history due to the loop delay. As a result, an eigenequation is obtained, and its closed form solutions are derived for some cases. After obtaining the state probability, statistical characteristics such as mean gain of the binary phase detector and timing error variance are calculated and demonstrated.
Resumo:
The original solution to the high failure rate of software development projects was the imposition of an engineering approach to software development, with processes aimed at providing a repeatable structure to maintain a consistency in the ‘production process’. Despite these attempts at addressing the crisis in software development, others have argued that the rigid processes of an engineering approach did not provide the solution. The Agile approach to software development strives to change how software is developed. It does this primarily by relying on empowered teams of developers who are trusted to manage the necessary tasks, and who accept that change is a necessary part of a development project. The use of, and interest in, Agile methods in software development projects has expanded greatly, yet this has been predominantly practitioner driven. There is a paucity of scientific research on Agile methods and how they are adopted and managed. This study aims at addressing this paucity by examining the adoption of Agile through a theoretical lens. The lens used in this research is that of double loop learning theory. The behaviours required in an Agile team are the same behaviours required in double loop learning; therefore, a transition to double loop learning is required for a successful Agile adoption. The theory of triple loop learning highlights that power factors (or power mechanisms in this research) can inhibit the attainment of double loop learning. This study identifies the negative behaviours - potential power mechanisms - that can inhibit the double loop learning inherent in an Agile adoption, to determine how the Agile processes and behaviours can create these power mechanisms, and how these power mechanisms impact on double loop learning and the Agile adoption. This is a critical realist study, which acknowledges that the real world is a complex one, hierarchically structured into layers. An a priori framework is created to represent these layers, which are categorised as: the Agile context, the power mechanisms, and double loop learning. The aim of the framework is to explain how the Agile processes and behaviours, through the teams of developers and project managers, can ultimately impact on the double loop learning behaviours required in an Agile adoption. Four case studies provide further refinement to the framework, with changes required due to observations which were often different to what existing literature would have predicted. The study concludes by explaining how the teams of developers, the individual developers, and the project managers, working with the Agile processes and required behaviours, can inhibit the double loop learning required in an Agile adoption. A solution is then proposed to mitigate these negative impacts. Additionally, two new research processes are introduced to add to the Information Systems research toolkit.
Resumo:
Emerging evidence suggests that microRNAs can initiate asymmetric division, but whether microRNA and protein cell fate determinants coordinate with each other remains unclear. Here, we show that miR-34a directly suppresses Numb in early-stage colon cancer stem cells (CCSCs), forming an incoherent feedforward loop (IFFL) targeting Notch to separate stem and non-stem cell fates robustly. Perturbation of the IFFL leads to a new intermediate cell population with plastic and ambiguous identity. Lgr5+ mouse intestinal/colon stem cells (ISCs) predominantly undergo symmetric division but turn on asymmetric division to curb the number of ISCs when proinflammatory response causes excessive proliferation. Deletion of miR-34a inhibits asymmetric division and exacerbates Lgr5+ ISC proliferation under such stress. Collectively, our data indicate that microRNA and protein cell fate determinants coordinate to enhance robustness of cell fate decision, and they provide a safeguard mechanism against stem cell proliferation induced by inflammation or oncogenic mutation.
Resumo:
This paper addresses some controversial issues relating to two main questions. Firstly, we discuss 'man-in-the loop' issues in SAACS. Some people advocate this must always be so that man's decisions can override autonomic components. In this case, the system has two subsystems - man and machine. Can we, however, have a fully autonomic machine - with no man in sight; even for short periods of time? What kinds of systems require man to always be in the loop? What is the optimum balance in self-to-human control? How do we determine the optimum? How far can we go in describing self-behaviour? How does a SAACS system handle unexpected behaviour? Secondly, what are the challenges/obstacles in testing SAACS in the context of self/human dilemma? Are there any lesson to be learned from other programmes e.g. Star-wars, aviation and space explorations? What role human factors and behavioural models play whilst in interacting with SAACS?.
Resumo:
A new quadrifilar antenna has been developed for generating circularly polarized backfire radiation. The antenna consists of two orthogonal rectangular conducting loops, each incorporating capacitive coupling and fed using either a single or two coaxial cables. Though the geometry is much simpler than a conventional quadrifilar helix antenna, the radiation pattern performance is very similar. Measured and simulated patterns are compared for two antennas with different feed arrangements. It is shown that the resonant structure can produce a cardioid pattern with a directivity of 4.5 dB (120 3-dB beamwidth) and a front-to-back ratio of more than 20 dB at the center operating frequency. A 10% impedance bandwidth (VSWR
Resumo:
The Solar Eclipse Corona Imaging System (SECIS) was used to record high-cadence observations of the solar corona during the total solar eclipse of 1999 August 11. During the 2 min 23.5 s of totality, 6364 images were recorded simultaneously in each of the two channels: a white light channel, and the Fe xiv (5303 Angstrom) 'green line' channel (T similar to2 MK). Here we report initial results from the SECIS experiment, including the discovery of a 6-s intensity oscillation in an active region coronal loop.