850 resultados para IEEE 802.11 standards
Resumo:
This paper analyzes the delay performance of Enhanced relay-enabled Distributed Coordination Function (ErDCF) for wireless ad hoc networks under ideal condition and in the presence of transmission errors. Relays are nodes capable of supporting high data rates for other low data rate nodes. In ideal channel ErDCF achieves higher throughput and reduced energy consumption compared to IEEE 802.11 Distributed Coordination Function (DCF). This gain is still maintained in the presence of errors. It is also expected of relays to reduce the delay. However, the impact on the delay behavior of ErDCF under transmission errors is not known. In this work, we have presented the impact of transmission errors on delay. It turns out that under transmission errors of sufficient magnitude to increase dropped packets, packet delay is reduced. This is due to increase in the probability of failure. As a result the packet drop time increases, thus reflecting the throughput degradation.
Resumo:
Esta tese de mestrado descreve o desenvolvimento, implementação e teste de um sistema de medição de energia concebido para um ambiente doméstico, baseado no circuito integrado medidor de energia Teridian 71M6515H. O sistema desenvolvido envia periodicamente os valores monitorizados para uma base de dados, através de uma rede sem fios com base no protocolo IEEE 802.11 (Wi-Fi). Os dados podem ser acedidos remotamente em tempo real, através de uma página na internet, onde é possível consultar a quantidade de energia consumida acumulada. Na primeira fase deste trabalho realizou-se o enquadramento do tema no contexto atual, realizando-se o estudo de alguns sistemas domésticos de monitorização do consumo de energia elétrica existentes no mercado. Numa segunda fase foi realizado o estudo dos componentes a serem utilizados, o desenho da placa de circuito impresso e o desenvolvimento do firmware, para que todo o processamento e manipulação dos dados fossem realizados pela unidade de aquisição de dados. Em seguida procedeu-se à construção da unidade de aquisição e à programação para o registo dos valores numa base de dados. A última fase consistiu nos testes de funcionamento da unidade de aquisição em conjunto com a aplicação de registo de dados. Com a implementação do sistema desenvolvido o consumidor doméstico poderá ter conhecimento, em tempo real, do custo de funcionamento dos equipamentos que possui e assim tomar decisões para os utilizar de forma mais racional, o que se pode traduzir numa economia dos recursos energéticos.
Resumo:
In this thesis, a frequency selective surface (FSS) consists of a two-dimensional periodic structure mounted on a dielectric substrate, which is capable of selecting signals in one or more frequency bands of interest. In search of better performance, more compact dimensions, low cost manufacturing, among other characteristics, these periodic structures have been continually optimized over time. Due to its spectral characteristics, which are similar to band-stop or band-pass filters, the FSSs have been studied and used in several applications for more than four decades. The design of an FSS with a periodic structure composed by pre-fractal elements facilitates the tuning of these spatial filters and the adjustment of its electromagnetic parameters, enabling a compact design which generally has a stable frequency response and superior performance relative to its euclidean counterpart. The unique properties of geometric fractals have shown to be useful, mainly in the production of antennas and frequency selective surfaces, enabling innovative solutions and commercial applications in microwave range. In recent applications, the FSSs modify the indoor propagation environments (emerging concept called wireless building ). In this context, the use of pre-fractal elements has also shown promising results, allowing a more effective filtering of more than one frequency band with a single-layer structure. This thesis approaches the design of FSSs using pre-fractal elements based on Vicsek, Peano and teragons geometries, which act as band-stop spatial filters. The transmission properties of the periodic surfaces are analyzed to design compact and efficient devices with stable frequency responses, applicable to microwave frequency range and suitable for use in indoor communications. The results are discussed in terms of the electromagnetic effect resulting from the variation of parameters such as: fractal iteration number (or fractal level), scale factor, fractal dimension and periodicity of FSS, according the pre-fractal element applied on the surface. The analysis of the fractal dimension s influence on the resonant properties of a FSS is a new contribution in relation to researches about microwave devices that use fractal geometry. Due to its own characteristics and the geometric shape of the Peano pre-fractal elements, the reconfiguration possibility of these structures is also investigated and discussed. This thesis also approaches, the construction of efficient selective filters with new configurations of teragons pre-fractal patches, proposed to control the WLAN coverage in indoor environments by rejecting the signals in the bands of 2.4~2.5 GHz (IEEE 802.11 b) and 5.0~6.0 GHz (IEEE 802.11a). The FSSs are initially analyzed through simulations performed by commercial software s: Ansoft DesignerTM and HFSSTM. The fractal design methodology is validated by experimental characterization of the built prototypes, using alternatively, different measurement setups, with commercial horn antennas and microstrip monopoles fabricated for low cost measurements
Resumo:
This work presents techniques used to design and manufacture microstrip patch antennas for applications in portable and mobile devices. To do so, are evaluated several factors that can influence the performance of microstrip patch antennas. Miniaturization techniques are studied and employed in order to apply this type of antenna in mobile and / or mobile. The theories of microstrip patch antennas are addressed by analyzing characteristics such as constitution, kinds of patches, substrates, feeding methods, analysis methods, the main advantages and disadvantages and others. Techniques for obtaining broadband microstrip patch antennas were surveyed in literature and exemplified mainly by means of simulations and measurements. For simulations of the antennas was used the commercial software . In addition, antenna miniaturization techniques have been studied as a main concern the fundamental limits of antennas with special attention to electrically small antennas because they are directly linked to the microstrip patch antennas. Five design antennas are proposed to demonstrate the effectiveness of techniques used to obtain the microstrip patch antennas broadband and miniaturized for use in mobile devices and/or portable. For this, the proposed antennas were simulated, built and measured. The antennas are proposed to be used in modern systems of wireless communications such as DTV, GPS, IEEE 802.16, IEEE 802.11, etc. The simulations of the antennas were made in business and computer programs. The measured results were obtained with a parser Vector of networks of the Rhode and Schwarz model ZVB 14
Resumo:
Frequency selective surfaces (Frequency Selective Surface - FSS) are often used in various applications in telecommunications. Some of these applications may require that these structures have response with multiple resonance bands. Other applications require that the FSS response have large frequency range, to meet the necessary requirements. FSS to design with these features there are numerous techniques cited in the scientific literature. Thus, the purpose of this paper is to examine some common techniques such as: Overlap of FSS; Elements combined; Elements Elements convolucionados and fractals. And designing multiband FSS and / or broadband selecting simple ways in terms of construction and occupy the smallest possible space, aiming at practical applications. Given these requirements, three projects FSS were performed: a technology applied to IEEE 802.11 a/b/g/n and two projects for application in UWB. In project development, commercial software Ansoft DesignerTM and experimental results were satisfactory was used
Resumo:
Due to the constantly increasing use of wireless networks in domestic, business and industrial environments, new challenges have emerged. The prototyping of new protocols in these environments is typically restricted to simulation environments, where there is the need of double implementation, one in the simulation environment where an initial proof of concept is performed and the other one in a real environment. Also, if real environments are used, it is not trivial to create a testbed for high density wireless networks given the need to use various real equipment as well as attenuators and power reducers to try to reduce the physical space required to create these laboratories. In this context, LVWNet (Linux Virtual Wireless Network) project was originally designed to create completely virtual testbeds for IEEE 802.11 networks on the Linux operating system. This paper aims to extend the current project LVWNet, adding to it the features like the ability to interact with real wireless hardware, provides a initial mobility ability using the positioning of the nodes in a space coordinates environment based on meters, with loss calculations due to attenuation in free space, enables some scalability increase by creating an own protocol that allows the communication between nodes without an intermediate host and dynamic registration of nodes, allowing new nodes to be inserted into in already in operation network
Resumo:
As Redes da Próxima Geração consistem no desenvolvimento de arquiteturas que viabilizem a continuidade de serviços que proporcionem sempre a melhor conectividade (Always Best Connectivity - ABC) aos usuários móveis com suporte adequado à Qualidade de Experiência (QoE) para aplicações multimídia de alta definição, nesse novo contexto as arquiteturas têm perspectiva orientada a serviços e não a protocolos. Esta tese apresenta uma arquitetura para redes da próxima geração capaz de fornecer acesso heterogêneo sem fio e handover vertical transparente para as aplicações multimídia. A tese considera diferentes tecnologias sem fio e também adota o padrão IEEE 802.21 (Media Independent Handover – MIH) para auxiliar na integração e gerenciamento das redes heterogêneas sem fio. As tecnologias que a arquitetura possui são: IEEE 802.11 (popularmente denominada de WiFi), IEEE 802.16 (popularmente denominada de WiMAX) e LTE (popularmente denominada de redes 4G). O objetivo é que arquitetura tenha a capacidade de escolher entre as alternativas disponíveis a melhor conexão para o momento. A arquitetura proposta apresenta mecanismos de predição de Qualidade de Experiência (Quality of Experience - QoE) que será o parâmetro decisivo para a realização ou não do handover para uma nova rede. A predição para determinar se haverá ou não mudança de conectividade será feita com o uso da inteligência computacional de Redes Neurais Artificiais. Além disso a arquitetura também apresenta um mecanismo de descarte seletivo de pacotes especifico para aplicações multimídia. A proposta é avaliada via simulação utilizando-se o ns-2 (Network Simulator) e os resultados de desempenho são apresentados através das métricas de QoS, de QoE e também visualmente através da exibição de frames dos vídeos transmitidos na arquitetura.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Unlike traditional wireless networks, characterized by the presence of last-mile, static and reliable infrastructures, Mobile ad Hoc Networks (MANETs) are dynamically formed by collections of mobile and static terminals that exchange data by enabling each other's communication. Supporting multi-hop communication in a MANET is a challenging research area because it requires cooperation between different protocol layers (MAC, routing, transport). In particular, MAC and routing protocols could be considered mutually cooperative protocol layers. When a route is established, the exposed and hidden terminal problems at MAC layer may decrease the end-to-end performance proportionally with the length of each route. Conversely, the contention at MAC layer may cause a routing protocol to respond by initiating new routes queries and routing table updates. Multi-hop communication may also benefit the presence of pseudo-centralized virtual infrastructures obtained by grouping nodes into clusters. Clustering structures may facilitate the spatial reuse of resources by increasing the system capacity: at the same time, the clustering hierarchy may be used to coordinate transmissions events inside the network and to support intra-cluster routing schemes. Again, MAC and clustering protocols could be considered mutually cooperative protocol layers: the clustering scheme could support MAC layer coordination among nodes, by shifting the distributed MAC paradigm towards a pseudo-centralized MAC paradigm. On the other hand, the system benefits of the clustering scheme could be emphasized by the pseudo-centralized MAC layer with the support for differentiated access priorities and controlled contention. In this thesis, we propose cross-layer solutions involving joint design of MAC, clustering and routing protocols in MANETs. As main contribution, we study and analyze the integration of MAC and clustering schemes to support multi-hop communication in large-scale ad hoc networks. A novel clustering protocol, named Availability Clustering (AC), is defined under general nodes' heterogeneity assumptions in terms of connectivity, available energy and relative mobility. On this basis, we design and analyze a distributed and adaptive MAC protocol, named Differentiated Distributed Coordination Function (DDCF), whose focus is to implement adaptive access differentiation based on the node roles, which have been assigned by the upper-layer's clustering scheme. We extensively simulate the proposed clustering scheme by showing its effectiveness in dominating the network dynamics, under some stressing mobility models and different mobility rates. Based on these results, we propose a possible application of the cross-layer MAC+Clustering scheme to support the fast propagation of alert messages in a vehicular environment. At the same time, we investigate the integration of MAC and routing protocols in large scale multi-hop ad-hoc networks. A novel multipath routing scheme is proposed, by extending the AOMDV protocol with a novel load-balancing approach to concurrently distribute the traffic among the multiple paths. We also study the composition effect of a IEEE 802.11-based enhanced MAC forwarding mechanism called Fast Forward (FF), used to reduce the effects of self-contention among frames at the MAC layer. The protocol framework is modelled and extensively simulated for a large set of metrics and scenarios. For both the schemes, the simulation results reveal the benefits of the cross-layer MAC+routing and MAC+clustering approaches over single-layer solutions.
Resumo:
Programa de doctorado: Tecnologías de las Telecomunicaciones (bienio 98/00). La fecha de publicación es la fecha de lectura
Resumo:
I primi studi su Orthogonal Frequency Division Multiplexing (OFDM) sono stati fatti fin dal 1960, ma negli ultimi anni la modulazione OFDM è emersa come una tecnica di modulazione chiave commerciale per i sistemi di comunicazione ad alta velocità. La ragione principale di questo crescente interesse è dovuto alla sua capacità di fornire dati ad alta velocità impiegando sistemi con complessità bassa e contrastando l'interferenza intersimbolo (ISI) e quella intercanale (ICI). Per questo motivo la modulazione OFDM è stata adottata da diversi sistemi digitali wireline e wireless standard, come Digital Audio Broadcasting (DAB), Asymmetric Digital Subscriber Line (ADSL), Wireless Local Area Network (IEEE 802.11 a,g,n) oppure per WiMAX e LTE.
Resumo:
This paper evaluates the performance of the most popular power saving mechanisms defined in the IEEE 802.11 standard, namely the Power Save Mode (Legacy-PSM) and the Unscheduled Automatic Power Save Delivery (U-APSD). The assessment comprises a detailed study concerning energy efficiency and capability to guarantee the required Quality of Service (QoS) for a certain application. The results, obtained in the OMNeT++ simulator, showed that U-APSD is more energy efficient than Legacy-PSM without compromising the end-to- end delay. Both U-APSD and Legacy-PSM revealed capability to guarantee the application QoS requirements in all the studied scenarios. However, unlike U-APSD, when Legacy-PSM is used in the presence of QoS demanding applications, all the stations connected to the network through the same access point will consume noticeable additional energy.
Resumo:
Abstract. During the last decade mobile communications increasingly became part of people's daily routine. Such usage raises new challenges regarding devices' battery lifetime management when using most popular wireless access technologies, such as IEEE 802.11. This paper investigates the energy/delay trade-off of using an end-user driven power saving approach, when compared with the standard IEEE 802.11 power saving algorithms. The assessment was conducted in a real testbed using an Android mobile phone and high-precision energy measurement hardware. The results show clear energy benefits of employing user-driven power saving techniques, when compared with other standard approaches.