504 resultados para ICTIOFAUNA DEMERSAL
Resumo:
The population biology and status of the painted sweeplips (Diagramma pictum) and spangled emperor (Lethrinus nebulosus) in the southern Arabian Gulf were established by using a combination of size-frequency, biological, and size-at-age data. Transverse sections of sagittal otoliths were characterized by alternating translucent and opaque bands that were validated as annuli. Comparisons of growth characteristics showed that there were no significant differences (P>0.05) between sexes. There were well defined peaks in the reproductive cycle, spawning occurred from April to May for both species, and the mean size at which females attained sexual maturity was 31.8 cm fork length (LF) for D. pictum and 27.6 cm (LF) for L. nebulosus. The mean sizes at first capture (21.1 cm LF for D. pictum and 26.4 cm LF for L. nebulosus) were smaller than the sizes for both at first sexual maturity and those at which yield per recruit would be maximized. The range of fishing-induced mortality rates for D. pictum (0.37−0.62/yr) was substantially greater than the target (Fopt=0.07/yr) and limit (Flimit=0.09/ yr) estimates. The range of fishing-induced mortality rates for L. nebulosus (0.15/yr to 0.57/yr) was also in excess of biological reference points (Fopt=0.10/yr and Flimit=0.13/yr). In addition to growth overfishing, the stocks were considered to be recruitment overfished because the biomass per recruit was less than 20% of the unexploited levels for both species. The results of the study are important to fisheries management authorities in the region because they indicate that both a reduction in fishing effort and mesh-size regulations are required for the demersal trap fishery.
Resumo:
Local communities and local government units are recognized as the primary stakeholders and participants in the management of coral reef resources and the primary beneficiaries of small-scale fishing activities in the nearshore areas of the coastal zone. The issues relating to the management of the coastal zone are multi-faceted and some issues are largely intertwined with national policy and development goals. Thus, national governments have jurisdiction over these nearshore coastal resources to harmonize policies, monitor resource use and provide incentives for sustainable use. However, the natural boundaries of these reef resources, the processes that support reef ecosystems, and the local or national affiliation of the people who benefit from them may transcend the boundaries of the local and national management units. Therefore, efforts to arrest the decline in fish catch and loss of biodiversity for reefs require management interventions and assessment activities to be carried out at varying scales. In Southeast Asia, some aspects of reef and reef resources management — particularly in deciding the allocation of catch among competing fisheries, development of sustainable harvest strategies, use of broodstock for restocking or stock enhancement programs, protection of nursery and spawning areas, designation of systems of marine protected areas, and the identification of representative, adequate and comprehensive areas for biodiversity conservation in the region — may require the definition of larger management units. At the regional level, multi-country initiatives will need to define units for the transboundary management of resources. The use of large marine ecosystems (LMEs) to identify and manage fisheries resources may be a starting point; however, given the relatively sedentary nature of coral reef-dwelling and reef-associated organisms compared with other pelagic and demersal species, meso-scale transboundary units within the LMEs have to be defined. This paper provides suggestions for transboundary management units for coral reef and reef-associated resources in Southeast Asia based on information from genetic structures of model organisms in the region. In addition, specific reef areas are identified, which may be important beyond their national boundaries, as potential sources of recruits.
Resumo:
A brief description of fisheries development in Djibouti is given, with emphasis on the major constraints that have to date limited the increase of fishing effort. Estimates of L sub( infinity ) obtained through Wetherall plots are presented for three important demersal species caught off northern Somalia and landed in Djibouti: the groupers Cephalopholis sonnerati, Epinephelus chlorostigma and E. areolatus (Fam. Serranidae). These are combined with estimates of the growth performance index O' to calculate K values, subsequently used for the construction of length-converted catch curves. The estimate of mortality thus obtained suggests that these stocks are lightly fished.
Resumo:
The fisheries of the Farasan Islands (Saudi Arabia, Red Sea) are described. The fishery resources are exploited by artisanal, investor and industrial sectors. The artisanal fishery consists mostly of line fishing around coral reefs and about half the fishing effort occurs within the proposed marine protected area (MPA). Activities by investor and industrial fisheries sector include line fishing, gill netting, fish trapping and demersal fish trawling. The relevant resource management issues that need to be addressed as part of a planning study for the establishment of a MPA are also presented. The major issues are: (1) the decline in the catch of the artisanal fishery; (2) by catch and habitat degradation; (3) sustainability in the collection of giant clams and pearl shells; and (4) the lack of information such as the importance of MPA to fisheries, stock assessment and catch and effort data. A significant role in the future management of the fisheries has been identified for the traditional representatives of the artisanal sector.
Resumo:
The diet composition of 30 fish species belonging to 16 families from the Pacific Coast of Colombia is described. Benthic crustaceans (37.5%) and bony fishes (23.7%, chiefly demersal) were the most important food items for the fish species analyzed. Data on diet composition of the fish species are presented for the first time which can be a source of information for trophic modeling.
Resumo:
Length-weight relationship (LWR) parameters of 72 species of fishes and 15 species of cephalopods caught in the Balearic Islands demersal fishery are reported. This is the first compilation of LWR for these groups in the Balearic Islands.
Resumo:
Sources of wastes in fishing operations mainly include bycatch discards; processing wastes where catch is processed onboard; plastic wastes due to abandoned, lost and discarded fishing gear; bilges and other wastes from the vessel operations. Fishing systems in general have an associated catch of nontargeted organisms known as bycatch. Non-selective fishing gear that is not modified or equipped to exclude non-targeted organisms, may take a significant quantity of bycatch of non-targeted finfish, juvenile fish, benthic animals, marine mammals, marine birds and vulnerable or endangered species that are often discarded. Average annual global discards, has been estimated to be 7.3 million t, based on a weighted discard rate of 8%, during 1992-2001 period. Trawl fisheries for shrimp and demersal finfish account for over 50% of the total estimated global discards. Plastic materials are extensively used in fisheries, owing to their durability and other desirable properties, contributing to the efficiency and catchability of the fishing gear. However, plastics biodegrade at an extremely slow rate compared to other organic materials. Abandoned, lost or otherwise discarded fishing gear (ALDFG) and related marine debris have been recognized as a critical problem in the marine environment and for living marine resources. Prevention of excess fishing capacity by appropriate management measures could lead to enormous savings in terms of fuel consumption, emissions and bycatch discards from the excess fishing fleet, capital and operational investments and labour deployment in capture fisheries, with significant economic gains. In this paper, wastes originating from fishing operations are reviewed, along with their environmental impacts and possible mitigation measures
Resumo:
Knowledge of the distribution and biology of the ragfish, Icosteus aenigmaticus, an aberrant deepwater perciform of the North Pacific Ocean, has increased slowly since the first description of the species in the 1880’s which was based on specimens retrieved from a fish monger’s table in San Francisco, Calif. As a historically rare, and subjectively unattractive appearing noncommercial species, ichthyologists have only studied ragfish from specimens caught and donated by fishermen or by the general public. Since 1958, I have accumulated catch records of >825 ragfish. Specimens were primarily from commercial fishermen and research personnel trawling for bottom and demersal species on the continental shelves of the eastern North Pacific Ocean, Gulf of Alaska, Bering Sea, and the western Pacific Ocean, as well as from gillnet fisheries for Pacific salmon, Oncorhynchus spp., in the north central Pacific Ocean. Available records came from four separate sources: 1) historical data based primarily on published and unpublished literature (1876–1990), 2) ragfish delivered fresh to Humboldt State University or records available from the California Department of Fish and Game of ragfish caught in northern California and southern Oregon bottom trawl fisheries (1950–99), 3) incidental catches of ragfish observed and recorded by scientific observers of the commercial fisheries of the eastern Pacific Ocean and catches in National Marine Fisheries Service trawl surveys studying these fisheries from 1976 to 1999, and 4) Japanese government research on nearshore fisheries of the northwestern Pacific Ocean (1950–99). Limited data on individual ragfish allowed mainly qualitative analysis, although some quantitative analysis could be made with ragfish data from northern California and southern Oregon. This paper includes a history of taxonomic and common names of the ragfish, types of fishing gear and other techniques recovering ragfish, a chronology of range extensions into the North Pacific and Bering Sea, reproductive biology of ragfish caught by trawl fisheries off northern California and southern Oregon, and topics dealing with early, juvenile, and adult life history, including age and growth, food habits, and ecology. Recommendations for future study are proposed, especially on the life history of juvenile ragfish (5–30 cm FL) which remains enigmatic.
Resumo:
Alaska plaice, Pleuronectes quadrituberculatus, is one of the major flatfishes in the eastern Bering Sea ecosystem and is most highly concentrated in the shallow continental shelf of the eastern Bering Sea. Annual commercial catches have ranged from less than 1,000 metric tons (t) in 1963 to 62,000 t in 1988. Alaska plaice is a relatively large flatfish averaging about 32 cm in length and 390 g in weight in commercial catches. They are distributed from nearshore waters to a depth of about 100 m in the eastern Bering Sea during summer, but move to deeper continental shelf waters in winter to escape sea ice and cold water temperatures. Being a long-lived species (>30 years), they have a relatively low natural mortality rate estimated at 0.20. Maturing at about age 7, Alaska plaice spawn from April through June on hard sandy substrates of the shelf region, primarily around the 100 m isobath. Prey items primarily include polychaetes and other marine worms. In comparison with other flatfish, Alaska plaice and rock sole, Pleuronectes bilineatus, have similar diets but different habitat preferences with separate areas of peak population density which may minimize interspecific competition. Yellowfin sole, Pleuronectes asper, while sharing similar habitat, differs from these two species because of the variety of prey items in its diet. Competition for food resources among the three species appears to be low. The resource has experienced light exploitation since 1963 and is currently in good condition. Based on the results of demersal trawl surveys and age-structured analyses, the exploitable biomass increased from 1971 through the mid-1980’s before decreasing to the 1997 level of 500,000 t. The recommended 1998 harvest level, Allowable Biological Catch, was calculated from the Baranov catch equation based on the FMSY harvest level and the projected 1997 biomass, resulting in a commercial harvest of 69,000 t, or about 16% of the estimated exploitable biomass.
Resumo:
The temporal variation of components of a moderately diverse (H=1.46) tropical estuarine fish assemblage (long. 146°30'E, lat. 8°45'S) was directed by salinities that had been determined by local oceanographic and probably topographic conditions. For this assemblage, two types of intrayear component profiles are predicted. Pooled data (1988-91) reveal a large component of regular/resident species (43%) in an assemblage which has been under a narrow temperature regime «5T). These results facilitate a discussion on the relevance and usefulness of three hypotheses often cited in studies concerning species diversity and component characteristics of the subtropical/tropical coastal nonreef fish assemblages. Manifestations of the assemblage are reflected in catch composition and weights of 39 trials conducted for a selective prawning gear whose performance in bycatch reduction, mainly for finfishes, is judged by an index, E, we have previously proposed. This gear is capable of harvesting the prawn while conserving the demersal fish. Behavioral responses to netting of the prawns and the finfishes, especially the nearshore surface schoolers such as leiognathids, are discussed from several points of view. An adaptation in terms of group selection for leiognathids of their locking mechanism of median fin spines has been interpreted. For the purpose of bycatch reduction or E enhancement, suggestions for improvements in net design and trawl configuration by considering the behavioral features of fish are made. Our original formula of E is modified for general use. Bycatch problems in the regional prawn fisheries and their possible impacts on fishery planning and development in Papua New Guinea as a developing country are discussed. The gear tested may offer enormous ecological and economic benefits. The gear is multipurpose, extremely simple, and can also be used as a biological sampler.
Resumo:
The Northeast Fisheries Science Center of NOAA's National Marine Fisheries Service has a long history of research on benthic invertebrates and habitats in support of the management of living marine resources. These studies began in the 1870's under Spencer F. Baird's guidance as part of an effort to characterize the Nation's fisheries and living marine resources and their ecological interactions. This century and a quarter of research has included many benthic invertebrate studies, including community characterizations, shellfish biology and culture, pathology, ecosystem energy budget modeling, habitat evaluations, assessments of human impacts, toxic chemical bioaccumulation in demersal food webs, habitat or endangered species management, benthic autecology, systematics (to define new species and species population boundaries), and other benthic studies. Here we review the scope of past and current studies as a background for strategic research planning and suggest areas for further research to support NOAA's goals of sustainable fisheries management, healthy coastal ecosystems, and protected species populations.
Resumo:
South African (Cape) fur seals, Arctocephalus pusillus pusillus, interact with the South African trawl fisheries-offshore demersal, inshore demersal, and midwater fisheries. These interactions take thef ollowing forms: Seals take or damage netted fish, on particular vessels they become caught in the propeller, seals drown in the nets, live seals come aboard and may be killed. Except in specific cases of seals damaging particular trawler propellers, interactions result in little cost to the offshore and midwater trawl fisheries. For the inshore fishery, seals damage fish in the net at an estimated cost in excess of R69, 728 (US$18,827) per year, but this is negligible (0.3%) in terms ofthe value of the fishery. Seal mortality is mainly caused by drowning in trawl nets and ranges from 2,524 to 3,636 seals of both sexes per year. Between 312 and 567 seals are deliberately killed annually, but this most likely takes place only when caught and they enter the area below deck, where they are difficult to remove, and pose a potential threat to crew safety. Overall, seal mortality during trawling operations is negligible (0.4-0.6%) in terms of the feeding population of seals in South Africa.
Resumo:
Assessment of walleye pollock, Theragra chalcogramma, in the eastern Bering Sea is complicated because the species is semi-pelagic in habit. Annual bottom trawl surveys provide estimates of demersal abundance on the eastern Bering Sea shelf. Every third year (starting in 1979), an extended area of the shelf and slope is surveyed and an echo integration-midwater trawl survey provides estimates of pollock abundance in midwater. Overall age-specific population and biomass estimates are obtained by summing the demersal and midwater results, assuming that the bottom trawl samples only pollock inhabiting the lower 3 m of the water column. Total population estimates have ranged from 134 x 109 fish in 1979 to 27 x 109 fish in 1988. The very high abundance observed in 1979 reflects the appearance of the unusually large 1978 year class. Changes in age-specific abundance estimates have documented the passage of strong (1978, 1982, and 1984) and weak year classes through the fishery. In general, older fish are more demersally oriented and younger fish are more abundant in midwater, but this trend was not always evident in the patterns of abundance of 1- and 2-year-old fish. As the average age of the population has increased, so has the relative proportion of pollock estimated by the demersal surveys. Consequently, it is unlikely that either technique can be used independently to monitor changes in abundance and age composition. Midwater assessment depends on pelagic trawl samples for size and age composition estimates, so both surveys are subject to biases resulting from gear performance and interactions between fish and gear. In this review, we discuss survey methodology and evaluate assumptions regarding catchability and availability as they relate to demersal, midwater, and overall assessment.
Resumo:
Yellowfin sole, Pleuronectes asper, is the second most abundant flatfish in the North Pacific Ocean and is most highly concentrated in the eastern Bering Sea. It has been a target species in the eastern Bering Sea since the mid-1950's, initially by foreign distant-water fisheries but more recently by U.S. fisheries. Annual commercial catches since 1959 have ranged from 42,000 to 554,000 metric tons (t). Yellowfin sole is a relatively small flatfish averaging about 26 cm in length and 200 g in weight in commercial catches. It is distributed from nearshore waters to depths of about 100 m in the eastern Bering Sea in summer, but moves to deeper water in winter to escape sea ice. Yellowfin sole is a benthopelagic feeder. It is a longlived species (>20 years) with a correspondingly low natural mortality rate estimated at 0.12. After being overexploited during the early years of the fishery and suffering a substantial decline in stock abundance, the resource has recovered and is currently in excellent condition. The biomass during the 1980's may have been as high as, if not higher than, that at the beginning of the fishery. Based on results of demersal trawl surveys and two age structured models, the current exploitable biomass has been estimated to range between 1.9 and 2.6 million t. Appropriate harvest strategies were investigated under a range of possible recruitment levels. The recommended harvest level was calculated by multiplying the yield derived from the FOI harvest level (161 g at F = 0.14) hy an average recruitment value resulting in a commercial harvest of 276,900 t, or about 14% of the estimated exploitable biomass.
Resumo:
Samples of shrimp trawl catches were collected from a commercial artisanal vessel fishing inside the 6-fm isobath in the Gulf of Paria, Trinidad. From August 1986 to May 1987, 34 late evening-early morning trawl trips were made and 97 hauls were sampled. Annual ratio estimates were 9 (SD 1.3) finfish:shrimp and 14.7 (SD 2.0) by-catch: shrimp, with the highest ratios observed August through December and the lowest from late January through May, the dry season. Extrapolation of ratios, using shrimp catch statistics, indicates that for 1986, 974,000 kg of finfish and 620,000 kg of crabs, Callinectes spp., were caught incidentally by artisanal shrimp trawlers fishing in the Gulf of Paria. Of this total incidental catch (1,594,000 kg), about 1,500,000 kg were discarded (94 percent). Four penaeid shrimp species are targeted: Penaeus schmitti, P. notialis, P. subtilis, and Xiphopenaeus kroyeri. Callinectes spp. were caught in large quantities from Augustto mid-January. Small (4-15 cm) pelagic and demersal species of little commercial importance dominated the finfish by-catch: Harengula spp., Cetengraulis edentulus, Chloroscombrus chrysurus, Eucinostomous spp., Diapterus rhombeus, and Cyclopsetta spp. Altogether, the monthly percentage of the species ranged from 70 to 85 percent of the total finfish by-catch.