440 resultados para Hypothalamus
Resumo:
The circadian timing system (CTS) is responsible for the generation and synchronization and the suprachiasmatic nucleus (SCN) of the hypothalamus has been described as the major circadian pacemaker in many mammalian species. The internal temporal organization managed by SCN is disturbed with aging bringing many pathological disorders that range from loss of complex cognitive performance to simple physiological functions. Therefore, our aim was perform a comparative study of the morphological aspects and neurochemical composition in the SCN of marmosets (Callithrix jacchus) adults and older using immunohistochemical techniques. We found morphometric and neurochemical changes in th SCN o folder animals in comparison to adults, among these a possible decreased in retinal projection to the SCN of older animals, found through a decline in CTB immunostaining, which can occur due atrophy and/or decreasing of fibers from the retinohypothalamic tract (RHT). The Klüver-Barrera histological technique strongly suggests a decrease in those fibers from RHT. Also, by means of a morphometric study, it is found a atrophy and numerical decline of neurons in SCN of aged animals, investigated by Nissl technique, and immunostaining with NeuN and calbindin. Relative optical density (ROD) analysis were used to evaluate the expression of some neurochemical components in SCN, such as GFAP expression, which was increased in older, result that indirectly reinforces that morphological changes occurs due the aging; the vasoactive intestinal polipeptide (VIP) showed no expression alteration in SCN of older animals; the serotonin (5-HT) was descreased in the dorsomedial portion of the SCN, and neurpeptide Y (NPY) apparently also decrease due to the increase of age. Many of these modifications were seen in other animals, such as rodents, human primates and non-human primates. These data about marmoset comes to add new information of the effect of aging on structures responsibles for the circadian rhytmicity, and that some behavioral changes controlled by th SCN, and founded in aged animals, may be caused by these morphological and neurochemical changes. Although some results have been quantitatively negative, qualitatively all analysis show significant change comparing adult and older animals, perhaps due to a low sampling number. In conclusion, the marmoset presents several morphological and neurochemical changes in the SCN of aged animals compared to adults, which may result in behavioral changes that favor pathology aging related
Resumo:
The light, besides the vision stimuli, controls other process completely independent of image formation, such as the synchronization of the organismic circadian rhythms to the enviromental light/dark cycle. In mammals, this adjust occurs through the retinohypothalamic tract, a direct retinal projection to the suprachiasmatic nucleus, considered to be the major circadian pacemaker. Early studies have identified only the suprachiasmatic nucleus as a retinal target in the hypothalamus. However, using more sensitive neuroanatomic tracers, other retinorecipient hypothalamic regions outside to suprachiasmatic nucleus were pointed in a great number of mammalian species. In this study, the retinohypothalamic tract was shown in the rock cavy (Kerodon rupestris), an endemic rodent of the semiarid region of the Brazilian Northeast, using unilateral intravitreal injections of cholera toxin subunit b as a neuronal tracer. The results reveal that in the rock cavy, besides the suprachiasmatic nucleus, several hypothalamic regions receive direct retinal projection, such as the ventrolateral preoptic nucleus, medial and lateral preoptic areas, the supraoptic nucleus and bordering areas, anterior, lateral and rectrochiasmatic hypothalamic areas, and the subparaventricular zone. The results are discussed by comparing with those of the literature, into a functional context
Resumo:
The retinal projections in mammals usually reach, classically, three major functional systems: the primary visual system, the accessory optic system, and the circadian timing system. But the retinal projections also reach areas classically considered non-visual, one of which groups the neurons of the zona incerta (ZI), target this study. The primary visual system includes thalamic lateral geniculate complex is formed by the dorsal lateral geniculate nucleus, intergeniculate leaflet and the ventral lateral geniculate nucleus and other Components. The accessory optic system is composed of the small nuclei: nuclei terminal dorsal, lateral, medial and the interstitial nucleus of the superior posterior fasciculus. These nuclei are involved in visuo-motor activities. The circadian timing system is comprised of the suprachiasmatic nucleus of the hypothalamus, that act as master circadian pacemaker, entraining pathways and efferents pathways to the efectors, and the intergeniculate leaflet, that seems to act as a modulator of the pacemaker. The retinal projections too reach classically considered non-visual areas, including the zona incerta. This region is localized in the ventral thalamus and has been implicated in various functional properties including nociceptive and somatosensory processing, motor response, sociosexual behaviour, feeding and drinking, in symptoms of neurodegenerative diseases, arousal and attention. It also displays connection with several areas of central nervous system. The aim of this study was characterize the retinal projection in the zona incerta of Callithrix jacchus (sagüi), a primate of the New World through the anterograde axonal transport of the cholera toxin subunit b and analyze the citoarchicteture using Nissl and NeuN, and neurochemical substances such as serotonin, GABA, VIP, VP, GFAP and binding-calcium proteins. The zona incerta showed a different division of the literature in citoarquitetura, both by means of Nissl as neurochemical by NeuN, with a subdivision ventrolateral and dorsomedial. The neurochemical to the other substances corroborate with this subdivision. The GFAP was almost completely negative for the zona incerta, result non evidenced in previous studies yet. The 16 retinal projection in sagüi, unlike other primates and rodents, reached the caudal portion only. This work helps to make further studies are conducted based on this subdivision and the localization of the neurochemical substances associated with possible behaviors that the zona incerta is involved
Resumo:
Fibromyalgia (FM) is a non-inflammatory rheumatic syndrome characterized by widespread musculoskeletal pain with palpable tender points, muscle stiffness, fatigue, and sleep disturbances. Patients with FM have hormonal changes that are directly correlated with symptoms of the syndrome. The neuroendocrine regulation may be impaired, with abnormalities in the hypothalamus-pituitary-adrenal (HPA) axis with various hormones showing changes in their levels. In women in fertile period, various gonadal hormones are associated with symptoms of the syndrome, but studies focusing only a population of women in post-menopausal period who do not use hormone replacement are rare. We developed an analytical cross sectional study to assess the plasma levels of cortisol and dehidroepiandrosterona sulfate (DHEA-S) with quimioluminescence method in a group of 17 women with FM and 19 healthy women in post-menopause who do not use hormone replacement and observe the correlation with the symptoms of pain through algometry, depression and physical functional capacity measured from the Beck Depression Index (BDI) and the Fibromyalgia Impact Questionnaire (FIQ). Three blood samples were collected in the morning (between 8:00 9:30) with an interval of 24 hours for the measurements of hormonal levels and biochemical profile. There were no immunological or lipid changes in patients with FM. Comparing the two groups, there is no difference in levels of cortisol and a tangential effect for DHEA-S (p=0,094) with the lowest levels in the FM. DHEA-S also correlated with pain threshold (r=0,7) and tolerance (r=0,65) in group FM. We found the presence of depressive state and low physical functional capacity in FM. It was also evident that women in post-menopausal period, DHEA-S should influence the symptoms of increased sensitivity to pain, but not the presence of depressive status and low physical functional
Resumo:
The hypothalamus is a diencephalic portion located around the third ventricle below the hypothalamic sulcus, limited by the optic chiasm, and by the mammillary bodies, acting as a center that integrates behavioral and homeostatic functions. Serotonin is a neurotransmitter produced in limited sites in the midbrain and brain stem, but is distributed throughout the central nervous system and has many functions, acting through specific receptors that are also distributed throughout the nervous system. Using immunohistochemical techniques, the aim of this study was to delineate the hypothalamic nuclei of the marmoset (Callithrix jacchus) and study the distribution of serotonin transporter and serotonin receptors in the hypothalamus of this species. We used the Nissl method to determine the cytoarchitecture of the hypothalamic nuclei, and immunohistochemistry to reveal the presence of NeuN as a method to determine the contours of the hypothalamic nuclei. As a result, we found serotonin containing fibers and terminals throughout the rostrocaudal extent of the hypothalamus, more concentrated in some nuclei, and even absent in some. Like serotonin, serotonin transporter was observed between pre-optic area and tuberal region of the hypothalamus, in densities and distribution similar to serotonin. The 5-HT1A and 5-HT1B receptors were found with minor differences among itselves regarding the disposition and intensity of staining.
Resumo:
The suprachiasmatic nucleus (SCN) of the anterior hypothalamus, together with the intergeniculate leaflet (IGL) of the thalamus are considered the central components of the circadian timing system (CTS) of mammals. This system is responsible for the generation and regulation of circadian rhythms by establishing a temporal organization of physiological processes and behaviors. The neuronal specific nuclear protein (NeuN) has been widely used as a neuronal marker in several studies. Since glial fibrillary acidic protein (GFAP) is a component of intermediate filaments found in the cytoplasm of astrocytes and is commonly used as a specific marker for these cells. This study aims to identify, in the marmoset, the NeuN immunoreactive neurons and glial cells immunoreactive to GFAP, as well as map the major route of photic synchronization of the STC, retinohypothalamic tract (RHT), and identify the indirect pathway to the SCN and pregeniculate nucleus (PGN) - structure homologous to IGL rodents, using immunohistochemical and cytoarchitectonic techniques. Observed in SCN the presence of neurons immunoreactive to NeuN and terminals immunoreactive subunit b of cholera toxin (CTb), neuropeptide Y (NPY) and serotonin (5- HT). In the PGN noted the presence of the NeuN and NPY immunoreactive neurons and the immunoreactive terminals CTb and 5-HT. Astrocytes are present throughout the extent of the SCN and the PGN this New World primate
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The excitatory amino acid L-glutamate injected into the nucleus of the solitary tract (NTS) in unanesthetized rats similar to peripheral chemoreceptor activation increases mean arterial pressure (MAP) and reduces heart rate. In this study, we investigated the effects of acute (I day) and chronic (15 days) electrolytic lesions of the preoptic-periventricular tissue surrounding the anteroventral third ventricle (AV3V region) on the pressor and bradycardic responses induced by injections of L-glutamate into the NTS or peripheral chemoreceptor activation in unanesthetized rats. Male Holtzman rats with sham or electrolytic AV3V lesions and a stainless steel cannula implanted into the NTS were used. Differently from the pressor responses (28 +/- 3 mm Hg) produced by injections into the NTS of sham-lesioned rats, L-glutamate (5 nmol/ 100 nl) injected into the NTS reduced MAP (-26 +/- 8 mm Hg) or produced no effect (2 7 turn Hg) in acute and chronic AV3V-lesioned rats, respectively. The bradycardia to L-glutamate into the NTS and the cardiovascular responses to chemoreflex activation with intravenous potassium cyanide or to baroreflex activation with intravenous phenylephrine or sodium nitroprusside were not modified by AV3V lesions. The results show that the integrity of the AV3V region is essential for the pressor responses to L-glutamate into the NTS but not for the pressor responses to chemoreflex activation, suggesting dissociation between the central mechanisms involved in these responses. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In the present experiments we investigated a possible involvement of imidazoline receptors of the paraventricular nucleus (PVN) of the hypothalamus on the presser effects of the angiotensin LI (ANG II) injected into the subfornical organ (SFO), in male Holtzman rats (250-300 g) with a cannula implanted into the third ventricle (3rdV), PVN and SFO. At first we tested the participation of alpha(2) and imidazoline agonist and antagonist compounds on the presser effect of ANG II injected into the 3rdV. Based on the results we may conclude that clonidine associated with rilmenidine was able to block the hypertensive response to ANG IT. The ANG II (20 pmol) injected into SFO induced a robust increase in blood pressure (37 +/- 2 mmHg). Isotonic saline (0.15 M) NaCl did not produce any change in blood pressure (5 +/- 2 mmHg). The injection of rilmenidine (30 mu g/kg/l mu L), an imidazoline agonist agent injected into PVN before ANG II injection into SFO, blocked the presser effect of ANG II (5 +/- 2 mmHg). Also, the injection of idazoxan (60 mu g/kg/mu L) before rilmenidine blocked the inhibitory effect of rilmenidine on blood pressure (39 +/- 4 mmHg). The injection of clonidine (20 nmol/mu L) prior to ANG II into the 3rdV produced a decreased in arterial blood pressure (37 +/- 2 mmHg) to (15 +/- 4 mmHg). The injection of yohimbine (80 nmol/mu L) prior to clonidine blocked the effect of clonidine on the effect of ANG II (27 +/- 2 mmHg). The injection of rilmenidine prior to ANG TI also induced a decrease in arterial blood pressure (10 +/- 3 mmHg). The injection of idazoxan prior to rilmenidine also blocked the inhibitory effect of rilmenidine (24 +/- 3 mmHg). In summary, the present study demonstrated that rilmenidine decreases the hypertensive effect of ANG II, with more potency than clonidine, even when injected into 3rdV or PVN. This study established that the PVN interacts with SFO by imidazoline receptors in order to control the arterial blood pressure. (C) Elsevier, Paris.
Resumo:
The circumventricular structures and the lateral hypothalamus (LH) have been shown to be important for the central action of angiotensin II (ANGII) on water and electrolyte regulation. Several anatomical findings have demonstrated neural connection between circumventricular structures and the LH, the present experiments were conducted to investigate the role of the alpha-adrenergic antagonists and agonistic injected into the LH on the water intake, sodium and potassium excretion elicited by injections of ANGII into the lateral ventricle (LV), the water intake was measured every 30 min over a period of 120 min. The sodium, potassium and urinary volume were measured over a period of 120 min in water-loaded rats. The injection of ANGII into the LV increased the water intake, which was reduced by previous injection of clonidine (an alpha-2-adrenergic agonist) into the LH. The injection of yohimbine (an alpha-2-adrenergic antagonist) and prazosin (an alpha-l-adrenergic antagonist) into the LH, which was done before injecting ANGII into the LV, also reduced the water intake induced by ANGII. The injection of ANGII into the LV reduced the sodium, potassium and urinary volume. Previous treatment with clonidine attenuated the action of ANGII in reducing the sodium, potassium and urinary volume, whereas previous treatment with yohimbine attenuated the effects of ANGII but with less intensity than that caused by clonidine. Previous treatment with prazosin increased the inhibitory effects of ANGII in those parameters. The injection of yohimbine and prazosin, which was done before the injection of clonidine, attenuated the effect of clonidine on the ANGII mechanism. The results of this study led us to postulate that when alpha-2-adrenergic receptors are blocked, the clonidine may act on the imidazoline receptors to produce its effects on the ANGII mechanism. We may also conclude that the LH is involved with circumventricular structures, which present excitatory and inhibitory mechanisms. Such mechanisms are responsible for regulating the renal excretion of sodium, potassium and water, (C) 2000 Elsevier B.V.
Resumo:
Neurons from the rostral ventrolateral medulla (RVLM) directly activate sympathetic preganglionic neurons in the spinal cord. Hypertensive responses and sympathetic activation produced by different stimuli are strongly affected by lesions of the preoptic periventricular tissue surrounding the anteroventral third ventricle (AV3V region). Therefore, in the present study, we investigated the effects of acute (1 day) and chronic (IS days) electrolytic lesions of the AV3V region on the pressor responses produced by injections of the excitatory amino acid L-glutamate into the RVLM of unanesthetized rats. Male Holtzman rats with sham or electrolytic AV3V lesions and a stainless steel cannula. implanted into the RVLM were used. The pressor responses produced by injections of L-glutamate (1, 5 and 10 nmol/100 nl) into the RVLM were reduced 1 day (9 +/- 4, 39 +/- 6 and 37 +/- 4 mm Hg, respectively) and 15 days after AV3V lesions (13 +/- 6, 39 +/- 4 and 43 +/- 4 mm Hg, respectively, vs. sham lesions: 29 +/- 3, 50 +/- 2 and 58 +/- 3 mm Hg, respectively). Injections of L-glutamate into the RVLM in sham or AV3V-lesioned rats produced no significant change in the heart rate (HR). Baroreflex bradycardia and tachycardia produced by iv phenylephrine or sodium nitroprusside, respectively, and the pressor and bradycardic responses to chemoreflex activation with iv potassium cyanide were not modified by AV3V lesions. The results suggest that signals from the AV3V region are important for sympathetic activation induced by L-glutamate into the RVLM. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Injections of the excitatory amino acid L-glutamate (L-glu) into the rostral ventrolateral medulla (RVLM) directly activate the sympathetic nervous system and increase mean arterial pressure (MAP). A previous study showed that lesions of the anteroventral third ventricle region in the forebrain reduced the pressor response to L-glu into the RVLM. In the present study we investigated the effects produced by injections of atropine (cholinergic antagonist) into the lateral ventricle (LV) on the pressor responses produced by L-ghl into the RVLM. Male Holtzman rats (280-320 g, n=5 to 12/group) with stainless steel cannulas implanted into the RVLM, LV or 4th ventricle (4th V) were used. MAP and heart rate (HR) were recorded in unanesthetized rats. After saline into the LV, injections of L-glu (5 nmol/100 nl) into the RVLM increased MAP (51 +/- 4 mm Hg) without changes in HR. Atropine (4 nmol/1 PI) injected into the LV reduced the pressor responses to L-glu into the RVLM (36 +/- 5 mm Hg), However, atropine at the same dose into the 4th V or directly into the RVLM did not modify the pressor responses to L-glu into the RVLM (45 +/- 2 and 49 +/- 4 mm Hg, respectively, vs. control: 50 +/- 4mmHg). Central cholinergic blockade did not affect baro and chemoreflex nor the basal MAP and HR. The results suggest that cholinergic mechanisms probably from forebrain facilitate or modulate the pressor responses to L-glu into the RVLM. The mechanism is activated by acetylcholine in the forebrain, however, the neurotransmitter released in the RVLM to facilitate the effects of glutamate is not acetylcholine. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this study we investigated the influence of cu-adrenergic antagonists injections into the paraventricular nucleus (PVN) of the hypothalamus on the thirst and salt appetite, diuresis, natriuresis, and presser effects of angiotensin II (ANG II) stimulation of medial septal area (MSA). ANG II injection into the MSA induced water and sodium intake, diuresis, natriuresis, and presser responses. The previous injection of prazosin (an alpha (1)-adrenergic antagonist) into the PVN abolished, whereas previous administration of yohimbine (an alpha (2)-adrenergic antagonist) into the PVN increased the water and sodium intake, urinary, natriuretic, and presser responses induced by ANG ii injected into the MSA. Previous injection of a nonselective alpha -adrenergic antagonist, regitin, into the PVN blocked the urinary excretion, and reduced the water and sodium intake, sodium intake, and presser responses induced by ANG II injected into the MSA. The present results suggest that alpha -adrenergic pathways involving the PVN are important for the water and sodium excretion, urine and sodium excretion, and presser responses, induced by angiotensinergic activation of the MSA. (C) 2001 Elsevier B.V.
Resumo:
We investigated the mechanisms responsible for increased blood pressure and sympathetic nerve activity (SNA) caused by 2-3 days dehydration (DH) both in vivo and in situ preparations. In euhydrated (EH) rats, systemic application of the AT(1) receptor antagonist Losartan and subsequent pre-collicular transection (to remove the hypothalamus) significantly reduced thoracic (t) SNA. In contrast, in DH rats, Losartan, followed by pre-collicular and pontine transections, failed to reduce tSNA, whereas transection at the medulla-spinal cord junction massively reduced tSNA. In DH but not EH rats, selective inhibition of the commissural nucleus tractus solitarii (cNTS) significantly reduced tSNA. Comparable data were obtained in both in situ and in vivo (anaesthetized/conscious) rats and suggest that following chronic dehydration, the control of tSNA transfers from supra-brainstem structures (e. g. hypothalamus) to the medulla oblongata, particularly the cNTS. As microarray analysis revealed up-regulation of AP1 transcription factor JunD in the dehydrated cNTS, we tested the hypothesis that AP1 transcription factor activity is responsible for dehydration-induced functional plasticity. When AP1 activity was blocked in the cNTS using a viral vector expressing a dominant negative FosB, cNTS inactivation was ineffective. However, tSNA was decreased after pre-collicular transection, a response similar to that seen in EHrats. Thus, the dehydration-induced switch in control of tSNA from hypothalamus to cNTS seems to be mediated via activation of AP1 transcription factors in the cNTS. If AP1 activity is blocked in the cNTS during dehydration, sympathetic activity control reverts back to forebrain regions. This unique reciprocating neural structure-switching plasticity between brain centres emphasizes the multiple mechanisms available for the adaptive response to dehydration.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)