930 resultados para Hydroxymethylglutaryl CoA reductase inhibitors
Resumo:
Background/Aim: Hyperhomocysteinemia due to Methylenetetrahydrofolate Reductase (MTHFR) gene, in particular the C677T (Ala222Val) polymorphism were recently associated to steatosis and fibrosis. We analyzed the frequency of MTHFR gene in a cross-sectional study of patients affected by Chronic Hepatitis C (CHC) from Northeast of Brazil. Method: One hundred seven-four untreated patients with CHC were genotyped for the C677T MTHFR. Genomic DNA was extracted from peripheral blood cells and the C677T MTHFR polymorphism was identified by PCR-RFLP. The homocysteine (Hcy) levels were determined by chemiluminescence method. All patients were negative for markers of Wilson's disease, hemochromatosis and autoimmune diseases and have current and past daily alcohol intake less than 100 g/week. Results: Among subjects infected with CHC genotype non-1 the frequency of MTHFR genotypes TT was 9.8% versus 4.4% genotype 1 (p = 0.01). Nevertheless, association was found between the MTHFR genotype TT x CT/CC polymorphism and the degree of steatosis and fibrosis in both hepatitis C genotype (p < 0.05). A significant difference was found on plasma Hcy levels in patients with steatosis regardless of HCV genotype (p = 0.03). Conclusion: Our results indicate that plasma Hcy levels is highly prevalent in subjects with chronic hepatits C with steatosis regardless of HCV genotype and vitamin deficiency. The presence of genotype TT of MTHFR C677T polymorphism was more common in CHC genotype non-1 infected patient regardless of histopathological classification and genotype TT+CT frequencies were significant in the presence of fibrosis grade 1+2 and of steatosis in CHC infected patients from the northeast of Brazil regardless of HCV genotype. The genetic susceptibility of MTHFR C677T polymorphism should be confirmed in a large population.
Resumo:
The presence of mutations associated with integrase inhibitor (INI) resistance among INI-naive patients may play an important clinical role in the use of those drugs Samples from 76 HIV-1-infected subjects naive to INIs were submitted to direct sequencing. No differences were found between naive (25%) subjects and subjects on HAART (75%). No primary mutation associated with raltegravir or elvitegravir resistance was found. However, 78% of sequences showed at least one accessory mutation associated with resistance. The analysis of the 76 IN sequences showed a high polymorphic level on this region among Brazilian HIV-1-infected subjects, including a high prevalence of aa substitutions related to INI resistance. The impact of these findings remains unclear and further studies are necessary to address these questions.
Resumo:
Entry inhibitor is a new class of drugs that target the viral envelope protein. This region is variable; hence resistance to these drugs may be present before treatment. The aim of this study was to analyze the frequency of patients failing treatment with transcriptase reverse and protease inhibitors that would respond to the entry inhibitors Enfuvirtide, Maraviroc, and BMS-806. The study included 100 HIV-1 positive patients from one outpatient clinic in the city of Sao Paulo, for whom a genotype test was requested due to treatment failure. Proviral DNA was amplified and sequenced for regions of gp120 and gp41. A total of 80 could be sequenced and from those, 73 (91.3%), 5 (6.3%) and 2 (2.5%) were classified as subtype B, F, and recombinants (B/F and B/C), respectively. CXCR4 co-receptor use was predicted in 30% of the strains. Primary resistance to Enfuvirtide was found in 1.3%, following the AIDS Society consensus list, and 10% would be considered resistant if a broader criterion was used. Resistance to BMS-806 was higher; 6 (7.5%), and was associated to non-B strains. Strikingly, 27.5% of samples harbored one or more mutation among A316T, I323V, and S405A, which have been related to decreased susceptibility of Maraviroc; 15% of them among viruses predictive to be R5. A more common mutation was A316T, which was associated to the Brazilian B strain harboring the GWGR motif at the tip of V3 loop and their derivative sequences. These results may be impact guidelines for genotype testing and treatment in Brazil.
Resumo:
Searching lead compounds for new antituberculosis drugs, the activity of synthetic sulfonamides and sulfonyl-hydrazones were assayed for their potential inhibitory activity towards a protein tyrosine phosphatase from Mycobacterium tuberculosis - PtpB. Four sulfonyl-hydrazones N-phenylmaleimide derivatives were active (compounds 14, 15, 19 and 21), and the inhibition of PtpB was found to be competitive with respect to the substrate p-nitrophenyl phosphate. Structure-based molecular docking simulations were performed and indicated that the new inhibitor candidates showed similar binding modes, filling the hydrophobic pocket of the protein by the establishment of van der Waals contacts, thereby contributing significantly to the complex stability.
Resumo:
Background: The metastatic disease rather than the primary tumor itself is responsible for death in most solid tumors, including breast cancer. The role of matrix metalloproteinases ( MMPs), tissue inhibitors of MMPs (TIMPs) and Reversion-inducing cysteine-rich protein with Kazal motifs ( RECK) in the metastatic process has previously been established. However, in all published studies only a limited number of MMPs/MMP inhibitors was analyzed in a limited number of cell lines. Here, we propose a more comprehensive approach by analyzing the expression levels of several MMPs (MMP-2, MMP-9 and MMP-14) and MMP inhibitors (TIMP-1, TIMP-2 and RECK) in different models ( five human breast cancer cell lines, 72 primary breast tumors and 30 adjacent normal tissues). Methods: We analyzed the expression levels of MMP-2, MMP-9 and MMP-14 and their inhibitors (TIMP-1, TIMP-2 and RECK) by quantitative RT-PCR (qRT-PCR) in five human breast cancer cell lines presenting increased invasiveness and metastatic potential, 72 primary breast tumors and 30 adjacent normal tissues. Moreover, the role of cell-extracellular matrix elements interactions in the regulation of expression and activity of MMPs and their inhibitors was analyzed by culturing these cell lines on plastic or on artificial ECM (Matrigel). Results: The results demonstrated that MMPs mRNA expression levels displayed a positive and statistically significant correlation with the transcriptional expression levels of their inhibitors both in the cell line models and in the tumor tissue samples. Furthermore, the expression of all MMP inhibitors was modulated by cell-Matrigel contact only in highly invasive and metastatic cell lines. The enzyme/inhibitor balance at the transcriptional level significantly favors the enzyme which is more evident in tumor than in adjacent non-tumor tissue samples. Conclusion: Our results suggest that the expression of MMPs and their inhibitors, at least at the transcriptional level, might be regulated by common factors and signaling pathways. Therefore, the multi-factorial analysis of these molecules could provide new and independent prognostic information contributing to the determination of more adequate therapy strategies for each patient.`
Resumo:
BACKGROUND: Xylitol is a sugar alcohol (polyalcohol) with many interesting properties for pharmaceutical and food products. It is currently produced by a chemical process, which has some disadvantages such as high energy requirement. Therefore microbiological production of xylitol has been studied as an alternative, but its viability is dependent on optimisation of the fermentation variables. Among these, aeration is fundamental, because xylitol is produced only under adequate oxygen availability. In most experiments with xylitol-producing yeasts, low oxygen transfer volumetric coefficient (K(L)a) values are used to maintain microaerobic conditions. However, in the present study the use of relatively high K(L)a values resulted in high xylitol production. The effect of aeration was also evaluated via the profiles of xylose reductase (XR) and xylitol clehydrogenase (XD) activities during the experiments. RESULTS: The highest XR specific activity (1.45 +/- 0.21 U mg(protein)(-1)) was achieved during the experiment with the lowest K(L)a value (12 h(-1)), while the highest XD specific activity (0.19 +/- 0.03 U mg(protein)(-1)) was observed with a K(L)a value of 25 h(-1). Xylitol production was enhanced when K(L)a was increased from 12 to 50 h(-1), which resulted in the best condition observed, corresponding to a xylitol volumetric productivity of 1.50 +/- 0.08 g(xylitol) L(-1) h(-1) and an efficiency of 71 +/- 6.0%. CONCLUSION: The results showed that the enzyme activities during xylitol bioproduction depend greatly on the initial KLa value (oxygen availability). This finding supplies important information for further studies in molecular biology and genetic engineering aimed at improving xylitol bioproduction. (C) 2008 Society of Chemical Industry
Resumo:
The release of xylose reductase (XR) from Candida mogii by cell disruption in a glass beads mill was studied using an experimental design. Statistical analysis of the results indicated that XR volumetric activity increases by using lower glass beads diameter and cell concentration, and by increasing the number of agitation pulses. Based on results attained in experimental design, assays were carried out aiming at the maximization of XR release. Under optimized conditions (300 mu m glass beads, 45 g/l of cell concentration and 50 pulses), the XR volumetric activity reach 0.683 U/ml. Disruption with glass beads showed to be the most efficient method for XR release when compared to sonication process. The highest specific activity (0.175 U/mg of protein) was found in extracts obtained by suspension freezing and thawing, which suggests that this method can be used as a selective process of cell disruption for XR release. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Proteinase inhibitors (PI) are present in plant tissues, especially in seeds, and act as a defense mechanism against herbivores and pathogens. Serine PI from soybean such as Bowman-Birk (BBPI) and Kunitz have been used to enhance resistance of sugarcane varieties to the sugarcane borer Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae), the major pest of this crop. The use of these genetically-modified plants (GM) expressing PI requires knowledge of its sustainability and environmental safety, determining the stability of the introduced characteristic and its effects on non-target organisms. The objective of this study was to evaluate direct effects of ingestion of semi-purified and purified soybean PI and GM sugarcane plants on the soil-dwelling mite Scheloribates praeincisus (Berlese) (Acari: Oribatida). This mite is abundant in agricultural soils and participates in the process of organic matter decomposition; for this reason it will be exposed to PI by feeding on GM plant debris. Eggs of S. praeincisus were isolated and after larvae emerged, immatures were fed milled sugarcane leaves added to semi-purified or purified PI (Kunitz and BBPI) or immatures were fed GM sugarcane varieties expressing Kunitz and BBPI type PI or the untransformed near isogenic parental line variety as a control. Developmental time (larva-adult) and survival of S. praeincisus was evaluated. Neither Kunitz nor BBPI affected S. praeincisus survival. On the other hand, ingestion of semi-purified and purified Kunitz inhibitor diminished duration of S. praeincisus immature stages. Ingestion of GM senescent leaves did not have an effect on S. praeincisus immature developmental time and survival, compared to ingestion of leaves from the isogenic parental plants. These results indicate that cultivation of these transgenic sugarcane plants is safe for the non-target species S. praeincisus.
Resumo:
Nitrofurazone (NF) and its derivative, hydroxymethylnitrofurazone (NFOH), have presented antichagasic activity. NFOH has higher activity and lower mutagenicity. The aim of this work was to assess whether NF and its derivative NFOH would also be inhibitors of cruzain, besides their trypanothione reductase inhibitory activity. In vitro cruzain inhibition tests were performed for both compounds, and the 50% inhibitory concentration (IC(50)) for NF and NFOH presented values of 22.83 +/- 1.2 mu M and 10.55 +/- 0.81 mu M, respectively. AM1 semi-empirical molecular modeling studies were performed to understand the activity of the compounds, corroborating the observed cruzain inhibitory activity.
Resumo:
Tuberculosis (TB) is the primary cause of mortality among infectious diseases. Mycobacterium tuberculosis monophosphate kinase (TMPKmt) is essential to DNA replication. Thus, this enzyme represents a promising target for developing new drugs against TB. In the present study, the receptor-independent, RI, 4D-QSAR method has been used to develop QSAR models and corresponding 3D-pharmacophores for a set of 81 thymidine analogues, and two corresponding subsets, reported as inhibitors of TMPKmt. The resulting optimized models are not only statistically significant with r (2) ranging from 0.83 to 0.92 and q (2) from 0.78 to 0.88, but also are robustly predictive based on test set predictions. The most and the least potent inhibitors in their respective postulated active conformations, derived from each of the models, were docked in the active site of the TMPKmt crystal structure. There is a solid consistency between the 3D-pharmacophore sites defined by the QSAR models and interactions with binding site residues. Moreover, the QSAR models provide insights regarding a probable mechanism of action of the analogues.
Resumo:
Thymidine monophosphate kinase (TMPK) has emerged as an attractive target for developing inhibitors of Mycobacterium tuberculosis growth. In this study the receptor-independent (RI) 4D-QSAR formalism has been used to develop QSAR models and corresponding 3D-pharmacophores for a set of 5`-thiourea-substituted alpha-thymidine inhibitors. Models were developed for the entire training set and for a subset of the training set consisting of the most potent inhibitors. The optimized (RI) 4D-QSAR models are statistically significant (r(2) = 0.90, q(2) = 0.83 entire set, r(2) = 0.86, q(2) = 0.80 high potency subset) and also possess good predictivity based on test set predictions. The most and least potent inhibitors, in their respective postulated active conformations derived from the models, were docked in the active site of the TMPK crystallographic structure. There is a solid consistency between the 3D-pharmacophore sites defined by the QSAR models and interactions with binding site residues. This model identifies new regions of the inhibitors that contain pharmacophore sites, such as the sugar-pyrimidine ring structure and the region of the 5`-arylthiourea moiety. These new regions of the ligands can be further explored and possibly exploited to identify new, novel, and, perhaps, better antituberculosis inhibitors of TMPKmt. Furthermore, the 3D-pharmacophores defined by these models can be used as a starting point for future receptor-dependent antituberculosis drug design as well as to elucidate candidate sites for substituent addition to optimize ADMET properties of analog inhibitors.
Resumo:
Chemopreventive activities of the dietary isoprenoids beta-ionone (beta I) and geraniol (GOH) were evaluated during the promotion phase of hepatocarcinogenesis. Over 5 consecutive weeks, rats received daily 16 mg/100 g body weight (b.w.) of beta I (beta I group), 25 mg/100 g b.w. of GOH (GOH group), or only corn oil (CO group, controls). Compared to the CO group, the following was observed: only the beta I group showed a decrease in the mean number of visible hepatocyte nodules (P<.05); beta I and GOH groups had reduced mean number of persistent preneoplastic lesions (pPNLs) (P<.05), but no differences regarding number of remodeling PNL (rPNLs) were observed; only the beta I group exhibited smaller rPNL size and percentage of liver sections occupied by pPNLs (P<.05), whereas the GOH group displayed a smaller percentage of liver sections occupied by rPNLs (P<.05); a trend was observed in the beta I group, which showed reduced cell proliferation of pPNLs (P<.10), and the GOH group had increased apoptosis in pPNLs and rPNLs (P<.05); only the beta I group displayed reduced total plasma cholesterol concentrations (P<.05) and increased hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase mRNA levels (P<.05): only the GOH group had lower hepatic membrane RhoA protein levels (P<.05); both the beta I- and GOH-treated groups had higher hepatic concentrations of beta I and GOH, respectively (P<.05). Given these data, beta I and GOH show promising chemopreventive effects during promotion of hepatocarcinogenesis by acting through distinct mechanism of actions: beta I may inhibit cell proliferation and modulate HMGCoA reductase, and GOH can induce apoptosis and inhibit RhoA activation. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Hepatocellular carcinoma (HCC) ranks in prevalence and mortality among top 10 cancers worldwide. Butyric acid (BA), a member of histone deacetylase inhibitors (HDACi) has been proposed as an anticareinogenic agent. However, its short half-life is a therapeutical limitation. This problem could be circumvented with tributyrin (TB), a proposed BA prodrug. To investigate TB effectiveness for chemoprevention, rats were treated with the compound during initial phases of ""resistant hepatocyte"" model of hepatocarcinogenesis, and cellular and molecular parameters were evaluated. TB inhibited (p < 0.05) development of hepatic preneoplastic lesions (PNL) including persistent ones considered HCC progression sites. TB increased (p < 0.05) PNL remodeling, a process whereby they tend to disappear. TB did not inhibit cell proliferation in PNL, but induced (p < 0.05) apoptosis in remodeling ones. Compared to controls, rats treated with TB presented increased (P < 0.05) hepatic levels of BA indicating its effectiveness as a prodrug. Molecular mechanisms of TB-induced hepatocarcinogenesis chemoprevention were investigated. TB increased (p < 0.05) hepatic nuclear histone H3K9 hyperacetylation specifically in PNL and p21 protein expression, which could be associated with inhibitory HDAC effects. Moreover, it reduced (p < 0.05) the frequency of persistent PNL with aberrant cytoplasmic p53 accumulation, an alteration associated with increased malignancy. Original data observed in our study support the effectiveness of TB as a prodrug of BA and as an HDACi in hepatocarcinogenesis chemoprevention. Besides histone acetylation and p21 restored expression, molecular mechanisms involved with TB anticarcinogenic actions could also be related to modulation of p53 pathways. (C) 2008 Wiley-Liss, Inc.
Resumo:
The effects on mitochondrial respiration and complex I NADH oxidase activity of cubebin and derivatives were evaluated. The compounds inhibited the state 3 glutamate/malate-supported respiration of hamster liver mitochondria with IC50 values ranging from 12.16 to 83.96M. NADH oxidase reaction was evaluated in submitochondrial particles. The compounds also inhibited this activity, showing the same order of potency observed for effects on state 3 respiration, as well as a tendency towards a non-competitive type of inhibition (KI values ranging from 0.62 to 16.1M). A potential binding mode of these compounds with complex I subunit B8, assessed by docking calculations, is proposed.
Resumo:
In this work, we have used molecular dynamics, density functional theory, virtual screening, ADMET predictions, and molecular interaction field studies to design and propose eight novel potential inhibitors of CDK2. The eight molecules proposed showed interesting structural characteristics that are required for inhibiting the CDK2 activity and show potential as drug candidates for the treatment of cancer. The parameters related to the Rule of Five were calculated, and only one of the molecules violated more than one parameter. One of the proposals and one of the drug-like compounds selected by virtual screening indicated to be promising candidates for CDK2-based cancer therapy.