907 resultados para Hydrophobic And Hydrophilic Interactions


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work used the colloidal theory to describe forces and energy interactions of colloidal complexes in the water and those formed during filtration run in direct filtration. Many interactions of particle energy profiles between colloidal surfaces for three geometries are presented here in: spherical, plate and cylindrical; and four surface interactions arrangements: two cylinders, two spheres, two plates and a sphere and a plate. Two different situations were analyzed, before and after electrostatic destabilization by action of the alum sulfate as coagulant in water studies samples prepared with kaolin. In the case were used mathematical modeling by extended DLVO theory (from the names: Derjarguin-Landau-Verwey-Overbeek) or XDLVO, which include traditional approach of the electric double layer (EDL), surfaces attraction forces or London-van der Waals (LvdW), esteric forces and hydrophobic forces, additionally considering another forces in colloidal system, like molecular repulsion or Born Repulsion and Acid-Base (AB) chemical function forces from Lewis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photosensitizers (PS) photodynamic activities are regulated by their location in the biological target, which modulates their photophysical and photochemical features. In this work the PS partition for the Xanthene Dyes Fluorescein (FSC), Eosin Y(EOS), Erythrosin B (ERY) and Rose Bengal B (RBB) in biomimetic models (SDS, CTAB and Pluronic P-123 micelles) and the effects on their photophysical characteristics are evaluated. The hydrophobic and electrostatic forces that govern the PS-micelle interaction are analyzed. At physiological pH (7.25), the ability of the dianionic protolytic form of the dyes to be positioned into the micelle palisade and its micelle interaction depends not only on the hydrophobicity of the dye but also on the micellar surface charge. The Binding Constants obey exactly the same order of the Partition Coefficients for the dyes in P-123 and CTAB micelles. The Stern-Volmer treatment pointed out that dyes are located inside the micelle, especially ERY and RBB. The magnitude of the dye-micelle interaction increased from SDS, P-123 and finally CTAB micelles due to the charges between dye and micelle, and among the xanthenes, their hydrophobic characteristics. Within the micelle pseudo phase, ERY and RBB are still very efficient photosensitizers exhibiting high quantum yield of singlet oxygen, which turns them very attractive especially with P-123 polymeric system as drug delivery systems in photodynamic therapy. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The last decades have witnessed significant and rapid progress in polymer chemistry and molecular biology. The invention of PCR and advances in automated solid phase synthesis of DNA have made this biological entity broadly available to all researchers across biological and chemical sciences. Thanks to the development of a variety of polymerization techniques, macromolecules can be synthesized with predetermined molecular weights and excellent structural control. In recent years these two exciting areas of research converged to generate a new type of nucleic acid hybrid material, consisting of oligodeoxynucleotides and organic polymers. By conjugating these two classes of materials, DNA block copolymers are generated exhibiting engineered material properties that cannot be realized with polymers or nucleic acids alone. Different synthetic strategies based on grafting onto routes in solution or on solid support were developed which afforded DNA block copolymers with hydrophilic, hydrophobic and thermoresponsive organic polymers in good yields. Beside the preparation of DNA block copolymers with a relative short DNA-segment, it was also demonstrated how these bioorganic polymers can be synthesized exhibiting large DNA blocks (>1000 bases) applying the polymerase chain reaction. Amphiphilic DNA block copolymers, which were synthesized fully automated in a DNA synthesizer, self-assemble into well-defined nanoparticles. Hybridization of spherical micelles with long DNA templates that encode several times the sequence of the micelle corona induced a transformation into rod-like micelles. The Watson-Crick motif aligned the hydrophobic polymer segments along the DNA double helix, which resulted in selective dimer formation. Even the length of the resulting nanostructures could be precisely adjusted by the number of nucleotides of the templates. In addition to changing the structural properties of DNA-b-PPO micelles, these materials were applied as 3D nanoscopic scaffolds for organic reactions. The DNA strands of the corona were organized by hydrophobic interactions of the organic polymer segments in such a fashion that several DNA-templated organic reactions proceeded in a sequence specific manner; either at the surface of the micelles or at the interface between the biological and the organic polymer blocks. The yields of reactions employing the micellar template were equivalent or better than existing template architectures. Aside from its physical properties and the morphologies achieved, an important requirement for a new biomaterial is its biocompatibility and interaction with living systems, i.e. human cells. The toxicity of the nanoparticles was analyzed by a cell proliferation assay. Motivated by the non-toxic nature of the amphiphilic DNA block copolymers, these nanoobjects were employed as drug delivery vehicles to target the anticancer drug to a tumor tissue. The micelles obtained from DNA block copolymers were easily functionalized with targeting units by hybridization. This facile route allowed studying the effect of the amount of targeting units on the targeting efficacy. By varying the site of functionalization, i.e. 5’ or 3’, the outcome of having the targeting unit at the periphery of the micelle or in the core of the micelle was studied. Additionally, these micelles were loaded with an anticancer drug, doxorubicin, and then applied to tumor cells. The viability of the cells was calculated in the presence and absence of targeting unit. It was demonstrated that the tumor cells bearing folate receptors showed a high mortality when the targeting unit was attached to the nanocarrier.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Der Fokus dieser Doktorarbeit liegt auf der kontrollierten Benetzung von festen Oberflächen, die in vielen Bereichen, wie zum Beispiel in der Mikrofluidik, für Beschichtungen und in biologischen Studien von Zellen oder Bakterien, von großer Bedeutung ist.rnDer erste Teil dieser Arbeit widmet sich der Frage, wie Nanorauigkeit das Benetzungsverhalten, d.h. die Kontaktwinkel und die Pinningstärke, von hydrophoben und superhydrophoben Beschichtungen beeinflusst. Hierfür wird eine neue Methode entwickelt, um eine nanoraue Silika-Beschichtung über die Gasphase auf eine superhydrophobe Oberfläche, die aus rauen Polystyrol-Silika-Kern-Schale-Partikeln besteht, aufzubringen. Es wird gezeigt, dass die Topographie und Dichte der Nanorauigkeiten bestimmt, ob sich die Superhydrophobizität verringert oder erhöht, d.h. ob sich ein Flüssigkeitstropfen im Nano-Wenzel- oder Nano-Cassie-Zustand befindet. Das verstärkte Pinning im Nano-Wenzel-Zustand beruht auf dem Eindringen von Flüssigkeitsmolekülen in die Nanoporen der Beschichtung. Im Nano-Cassie-Zustand dagegen sitzt der Tropfen auf den Nanorauigkeiten, was das Pinning vermindert. Die experimentellen Ergebnisse werden mit molekulardynamischen Simulationen in Bezug gesetzt, die den Einfluss der Oberflächenbeschichtungsdichte und der Länge von fluorinierten Silanen auf die Hydrophobizität einer Oberfläche untersuchen. rnEs wurden bereits verschiedenste Techniken zur Herstellung von transparenten superhydrophoben, d.h. extrem flüssigkeitsabweisenden, Oberflächen entwickelt. Eine aktuelle Herausforderung liegt darin, Funktionalitäten einzuführen, ohne die superhydrophoben Eigenschaften einer Oberfläche zu verändern. Dies ist extrem anspruchsvoll, da funktionelle Gruppen in der Regel hydrophil sind. In dieser Arbeit wird eine innovative Methode zur Herstellung von transparenten superhydrophoben Oberflächen aus Janus-Mikrosäulen mit variierenden Dimensionen und Topographien entwickelt. Die Janus-Säulen haben hydrophobe Seitenwände und hydrophile Silika-Oberseiten, die anschließend selektiv und ohne Verlust der superhydrophoben Eigenschaften der Oberfläche funktionalisiert werden können. Diese selektive Oberflächenfunktionalisierung wird mittels konfokaler Mikroskopie und durch das chemische Anbinden von fluoreszenten Molekülen an die Säulenoberseiten sichtbar gemacht. Außerdem wird gezeigt, dass das Benetzungsverhalten durch Wechselwirkungen zwischen Flüssigkeit und Festkörper in der Nähe der Benetzungslinie bestimmt wird. Diese Beobachtung widerlegt das allgemein akzeptierte Modell von Cassie und Baxter und beinhaltet, dass hydrophile Flächen, die durch mechanischen Abrieb freigelegt werden, nicht zu einem Verlust der Superhydrophobizität führen müssen, wie allgemein angenommen.rnBenetzung kann auch durch eine räumliche Beschränkung von Flüssigkeiten kontrolliert werden, z.B. in mikrofluidischen Systemen. Hier wird eine modifizierte Stöber-Synthese verwendet, um künstliche und natürliche Faser-Template mit einer Silika-Schicht zu ummanteln. Nach der thermischen Zersetzung des organischen Templat-Materials entstehen wohldefinierte Silika-Kanäle und Kanalkreuzungen mit gleichmäßigen Durchmessern im Nano- und Mikrometerbereich. Auf Grund ihrer Transparenz, mechanischen Stabilität und des großen Länge-zu-Durchmesser-Verhältnisses sind die Kanäle sehr gut geeignet, um die Füllgeschwindigkeiten von Flüssigkeiten mit variierenden Oberflächenspannungen und Viskositäten zu untersuchen. Konfokale Mikroskopie ermöglicht es hierbei, die Füllgeschwindigkeiten über eine Länge von mehreren Millimetern, sowie direkt am Kanaleingang zu messen. Das späte Füllstadium kann sehr gut mit der Lucas-Washburn-Gleichung beschrieben werden. Die anfänglichen Füllgeschwindigkeiten sind jedoch niedriger als theoretisch vorhergesagt. Wohingegen die vorhergehenden Abschnitte dieser Arbeit sich mit der quasistatischen Benetzung beschäftigen, spielt hier die Dynamik der Benetzung eine wichtige Rolle. Tatsächlich lassen sich die beobachteten Abweichungen durch einen geschwindigkeitsabhängigen Fortschreitkontaktwinkel erklären und durch dynamische Benetzungstheorien modellieren. Somit löst diese Arbeit das seit langem diskutierte Problem der Abweichungen von der Lucas-Washburn-Gleichung bei kleinen Füllgeschwindigkeiten.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental characterization of molecular details is challenging, and although single molecule experiments have gained prominence, oligomer characterization remains largely unexplored. The ability to monitor the time evolution of individual molecules while they self assemble is essential in providing mechanistic insights about biological events. Molecular dynamics (MD) simulations can fill the gap in knowledge between single molecule experiments and ensemble studies like NMR, and are increasingly used to gain a better understanding of microscopic properties. Coarse-grained (CG) models aid in both exploring longer length and time scale molecular phenomena, and narrowing down the key interactions responsible for significant system characteristics. Over the past decade, CG techniques have made a significant impact in understanding physicochemical processes. However, the realm of peptide-lipid interfacial interactions, primarily binding, partitioning and folding of amphipathic peptides, remains largely unexplored compared to peptide folding in solution. The main drawback of existing CG models is the inability to capture environmentally sensitive changes in dipolar interactions, which are indigenous to protein folding, and lipid dynamics. We have used the Drude oscillator approach to incorporate structural polarization and dipolar interactions in CG beads to develop a minimalistic peptide model, WEPPROM (Water Explicit Polarizable PROtein Model), and a lipid model WEPMEM (Water Explicit Polarizable MEmbrane Model). The addition of backbone dipolar interactions in a CG model for peptides enabled us to achieve alpha-beta secondary structure content de novo, without any added bias. As a prelude to studying amphipathic peptide-lipid membrane interactions, the balance between hydrophobicity and backbone dipolar interactions in driving ordered peptide aggregation in water and at a hydrophobic-hydrophilic interface, was explored. We found that backbone dipole interactions play a crucial role in driving ordered peptide aggregation, both in water and at hydrophobic-hydrophilic interfaces; while hydrophobicity is more relevant for aggregation in water. A zwitterionic (POPC: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and an anionic lipid (POPS: 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine) are used as model lipids for WEPMEM. The addition of head group dipolar interactions in lipids significantly improved structural, dynamic and dielectric properties of the model bilayer. Using WEPMEM and WEPPROM, we studied membrane-induced peptide folding of a cationic antimicrobial peptide with anticancer activity, SVS-1. We found that membrane-induced peptide folding is driven by both (a) cooperativity in peptide self interaction and (b) cooperativity in membrane-peptide interactions. The dipolar interactions between the peptide and the lipid head-groups contribute to stabilizing folded conformations. The role of monovalent ion size and peptide concentration in driving lipid domain formation in anionic/zwitterionic lipid mixtures was also investigated. Our study suggest monovalent ion size to be a crucial determinant of interaction with lipid head groups, and hence domain formation in lipid mixtures. This study reinforces the role of dipole interactions in protein folding, lipid membrane properties, membrane induced peptide folding and lipid domain formation. Therefore, the models developed in this thesis can be used to explore a multitude of biomolecular processes, both at longer time-scales and larger system sizes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bovine rumen protein with two levels of residual lipids (1.9 per cent or 3.8 per cent) was subjected to thermoplastic extrusion under different temperatures and moisture contents. Protein solubility in different buffers, disulphide cross-linking and molecular weight distribution were determined on the extrudates. After extrusion, samples with 1.9 per cent residual lipids content had a higher concentration of protein insoluble by undetermined forces, irrespective of feed moisture and processing temperature used. Lipid content of 3.8 per cent in the feed material resulted in more protein participating in the extrudate network through non-covalent interactions (hydrophobic and electrostatic) and disulphide bonds. A small dependency of the extrusion process on moisture and temperature and a marked dependency on lipid content, especially phospholipid, was observed, Electrophoresis under non-reducing conditions showed that protein extrusion with low feed moisture promoted high molecular breakdown inside the barrel, probably due to intense shear force, and further protein aggregation at the die end

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dimerisation of leucine zippers results from the parallel association of alpha-helices to form a coiled coil. Coiled coils comprise a heptad repeat, denoted as (abcdefg)(n), where residues at positions a and d are hydrophobic and constitute the core of the dimer interface. Charged amino acids at the e and g positions of the coiled coil are thought to be the major influence on dimerisation specificity through the formation of attractive and repulsive interhelical electrostatic interactions. However, the variability of a-position residues in leucine zipper transcription factors prompted us to investigate their influence on dimerisation specificity. We demonstrate that mutation of a single interfacial a-position Ala residue to either Val, Ile or Leu significantly alters the homo- and heterodimerisation specificities of the leucine zipper domain from the c-Jun transcription factor. These results illustrate the importance of a-position residues in controlling leucine zipper dimerisation specificity in addition to providing substantial contributions to dimer stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the interfacial interactions and structure is important to better design and application of organic-inorganic nanohybrids. This paper presents our recent molecular dynamic studies on organoclays and polymer nanocomposites, including the layering behavior of organoclays, structural and dynamic properties of dioctadecyldimethyl ammoniums in organoclays, and interfacial interactions and structure of polyurethane nanocomposites. The results demonstrate that the layering behaviors of organoclays are closely related to the chain length of quaternary alkyl ammoniums and cation exchangeable capacity of clays. In addition to typical layered structures such as monolayer, bilayer and pseudo-trilayer, a pseudo-quadrilayer structure was also observed in organoclays modified with dioctadecyldimethyl ammoniums (DODDMA). In such a structure, alkyl chains do not lie flat within a single layer but interlace, and also jump to the next layer or even the next nearest layer. Moreover, the diffusion constants of nitrogen and methylene atoms increase with the temperature and methelene towards the tail groups. For polyurethane nanocomposite, the van der Waals interaction between apolar alkyl chains and soft segments of polyurethane predominates the interactions between organoclay and polyurethane. Different from most bulk polyurethane systems, there is no distinct phase-separated structure for the polyurethane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Curcumin and caffeine (used as lipophilic and hydrophilic model compounds, respectively) were successfully encapsulated in lactoferrin-glycomacropeptide (Lf-GMP) nanohydrogels by thermal gelation showing high encapsulation efficiencies (>90 %). FTIR spectroscopy confirmed the encapsulation of bioactive compounds in Lf-GMP nanohydrogels and revealed that according to the encapsulated compound different interactions occur with the nanohydrogel matrix. The successful encapsulation of bioactive compounds in Lf-GMP nanohydrogels was also confirmed by fluorescence measurements and confocal laser scanning microscopy. TEM images showed that loaded nanohydrogels maintain their spherical shape with sizes of 112 and 126 nm for curcumin and caffeine encapsulated in Lf-GMP nanohydrogels, respectively; in both cases a polydispersity of 0.2 was obtained. The release mechanisms of bioactive compounds through Lf-GMP nanohydrogels were evaluated at pH 2 and pH 7, by fitting the Linear Superimposition Model to the experimental data. The bioactive compounds release was found to be pH-dependent: at pH 2, relaxation is the governing phenomenon for curcumin and caffeine compounds and at pH 7 Ficks diffusion is the main mechanism of caffeine release while curcumin was not released through Lf-GMP nanohydrogels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Depressed and non-depressed mothers and their 3-month-old infants were videotaped during breastfeeding and bottlefeeding interactions. The videotapes were subsequently coded for a number of feeding interaction behaviors as well as being rated on the Interaction Rating Scales. No differences were noted between the depressed and non-depressed mothers. Several breastfeeding versus bottlefeeding group effects were observed. The breastfeeding mothers showed less burping and less intrusive behavior during the nipple-in periods as well as during the nipple-out periods. In addition, the breastfeeding mothers and their infants received better ratings on the Interaction Rating Scales. These data suggest that the depressed mothers and their infants not unlike the non-depressed mothers and their infants were benefited by breastfeeding.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Antifreeze proteins (AFPs) inhibit ice growth at sub-zero temperatures. The prototypical type-III AFPs have been extensively studied, notably by X-ray crystallography, solid-state and solution NMR, and mutagenesis, leading to the identification of a compound ice-binding surface (IBS) composed of two adjacent ice-binding sections, each which binds to particular lattice planes of ice crystals, poisoning their growth. This surface, including many hydrophobic and some hydrophilic residues, has been extensively used to model the interaction of AFP with ice. Experimentally observed water molecules facing the IBS have been used in an attempt to validate these models. However, these trials have been hindered by the limited capability of X-ray crystallography to reliably identify all water molecules of the hydration layer. Due to the strong diffraction signal from both the oxygen and deuterium atoms, neutron diffraction provides a more effective way to determine the water molecule positions (as D(2) O). Here we report the successful structure determination at 293 K of fully perdeuterated type-III AFP by joint X-ray and neutron diffraction providing a very detailed description of the protein and its solvent structure. X-ray data were collected to a resolution of 1.05 Å, and neutron Laue data to a resolution of 1.85 Å with a "radically small" crystal volume of 0.13 mm(3). The identification of a tetrahedral water cluster in nuclear scattering density maps has allowed the reconstruction of the IBS-bound ice crystal primary prismatic face. Analysis of the interactions between the IBS and the bound ice crystal primary prismatic face indicates the role of the hydrophobic residues, which are found to bind inside the holes of the ice surface, thus explaining the specificity of AFPs for ice versus water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fungi and bacteria are key agents in plant litter decomposition in freshwater ecosystems. However, the specific roles of these two groups and their interactions during the decomposition process are unclear. We compared the growth and patterns of degradativeenzymes expressed by communities of bacteria and fungi grown separately and in coexistence on Phragmites leaves. The two groups displayed both synergistic and antagonistic interactions. Bacteria grew better together with fungi than alone. In addition, there was a negative effect of bacteria on fungi, which appeared to be caused by suppression of fungal growth and biomass accrual rather than specifically affecting enzyme activity. Fungi growing alone had a high capacity for the decomposition of plant polymers such as lignin, cellulose, and hemicellulose. In contrast, enzyme activities were in general low when bacteria grew alone, and the activity of key enzymes in the degradation of lignin and cellulose (phenol oxidase and cellobiohydrolase) was undetectable in the bacteria-only treatment. Still, biomass-specific activities of most enzymes were higher in bacteria than in fungi. The low total activity and growth of bacteria in the absence of fungi in spite of apparent high enzymatic efficiency during the degradation of many substrates suggest that fungi provide the bacteria with resources that the bacteria were not able to acquire on their own, most probably intermediate decomposition products released by fungi that could be used by bacteria

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prevalence of inflammatory based diseases has increased in industrialized countries over the last decades. For allergic diseases, two primary hypotheses have been proposed to explain this phenomenon, namely the hygiene and dietary evolution based hypothesis. Particularly, the reduced early exposure to microbes and an increase in the amount of polyunsaturated fatty acids (especially n-6 PUFA) in the diet have been discussed. Often, these two factors have been studied independently, even though both factors have been shown to possess potential health benefits and their mode of action to share similar mechanisms. The hypothesis of the present study was that demonstrate that PUFA and probiotics are not separate entities as such but do interact with each other. In the present study, we investigated whether maternal diet and atopic status influence the PUFA composition of breast milk and serum fatty acids of infants, and whether the fatty acid absorption and utilization of infant formula fatty acids is affected by supplementation of infant formula with probiotic bacteria (Lactobacillus GG and Bifidobacterium lactis Bb-12). Moreover, we investigated the mechanisms by which different PUFA influence the physicochemical and functional properties of probiotics as well as functionality of epithelial cells in vitro. We demonstrated a carry-over effect of dietary fatty acids from maternal diet via breast milk into infants’ serum lipid fatty acids. Our data confirmed the previously shown allergy –related PUFA level imbalances, though it did not fully support the impaired desaturation and elongation capacity hypothesis. We also showed that PUFA incorporation into phospholipids of infants was influenced by probiotics in infant formula in a strain dependent manner. Especially,Bifidobacterium lactis Bb-12 in infant formula promoted the utilization of n-3 PUFA. Mechanistically, we demonstrated that probiotics (Lactobacillus GG, Lactobacillus casei Shirota and Lactobacillus bulgaricus) did incorporate and interconvert exogenous free PUFA in the growth medium into bacterial fatty acids strain and PUFA dependently. In general, high concentrations of free PUFA inhibited the growth and mucus adhesion of probiotics, whereas low concentrations of specific long chain PUFA were found to promote the growth and mucus adhesion of Lactobacillus casei Shirota. These effects were paralleled with only minor alterations in hydrophobicity and electron donor – electron acceptor properties of lactobacilli. Furthermore, free PUFA were also demonstrated to alter the adhesion capacity of the intestinal epithelial cells; n-6 PUFA tended to inhibit the Caco-2 adhesion of probiotics, whereas n-3 PUFA had either no or minor effects or even promote the bacterial adhesion (especially Lactobacillus casei Shirota) to PUFA treated Caco-2 cells. The results of this study demonstrate the close and bilateral interactions between dietary PUFA and probiotics. Probiotics were shown to influence the absorption and utilization of dietary PUFA, whereas PUFA were shown to alter the functional properties of both probiotics and mucosal epithelia. These findings suggest that a more thorough understanding of interactions between PUFA and intestinal microbiota is a prerequisite, when the beneficial effects of new functional foods containing probiotics are designed and planned for human intervention studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The properties of the paper surface play a crucial role in ensuring suitable quality and runnability in various converting and finishing operations, such as printing. Plasma surface modification makes it possible to modify the surface chemistry of paper without altering the bulk material properties. This also makes it possible to investigate the role of the surface chemistry alone on printability without influencing the porous structure of the pigment-coated paper. Since the porous structure of a pigment coating controls both ink setting and optical properties, surface chemical changes created by a plasma modification have a potential to decouple these two effects and to permit a better optimization of them both. The aim of this work was to understand the effects of plasma surface modification on paper properties, and how it influences printability in the sheet-fed offset process. The objective was to broaden the fundamental understanding of the role of surface chemistry on offset printing. The effects of changing the hydrophilicity/ hydrophobicity and the surface chemical composition by plasma activation and plasma coatings on the properties of coated paper and on ink-paper interactions as well as on sheet-fed offset print quality were investigated. In addition, the durability of the plasma surface modification was studied. Nowadays, a typical sheet-fed offset press also contains units for surface finishing, for example UVvarnishing. The role of the surface chemistry on the UV-varnish absorption into highly permeable and porous pigment-coated paper was also investigated. With plasma activation it was possible to increase the surface energy and hydrophilicity of paper. Both polar and dispersion interactions were found to increase, although the change was greater in the polar interactions due to induced oxygen molecular groups. The results indicated that plasma activation takes place particularly in high molecular weight components such as the dispersion chemicals used to stabilize the pigment and latex particles. Surface composition, such as pigment and binder type, was found to influence the response to the plasma activation. The general trend was that pilot-scale treatment modified the surface chemistry without altering the physical coating structure, whereas excessive laboratory-scale treatment increased the surface roughness and reduced the surface strength, which led to micro-picking in printing. It was shown that pilot-scale plasma activation in combination with appropriate ink oils makes it possible to adjust the ink-setting rate. The ink-setting rate decreased with linseed-oil-based inks, probably due to increased acid-base interactions between the polar groups in the oil and the plasma-treated paper surface. With mineral-oil-based inks, the ink setting accelerated due to plasma activation. Hydrophobic plasma coatings were able to reduce or even prevent the absorption of dampening water into pigmentcoated paper, even when the dampening water was applied under the influence of nip pressure. A uniform hydrophobic plasma coating with sufficient chemical affinity with ink gave an improved print quality in terms of higher print density and lower print mottle. It was also shown that a fluorocarbon plasma coating reduced the free wetting of the UV-varnish into the highly permeable and porous pigment coating. However, when the UV-varnish was applied under the influence of nip pressure, which leads to forced wetting, the role of the surface chemical composition seems to be much less. A decay in surface energy and wettability occurred during the first weeks of storage after plasma activation, after which it leveled off. However, the oxygen/carbon elemental ratio did not decrease as a function of time, indicating that ageing could be caused by a re-orientation of polar groups or by a contamination of the surface. The plasma coatings appeared to be more stable when the hydrophobicity was higher, probably due to fewer interactions with oxygen and water vapor in the air.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Puumuovikomposiittien valmistuksessa yhdistetään kaksi toisistaan eroavaa materiaalia jolloin saadaan aikaan materiaalien ominaisuuksien ainutlaatuinen yhdistelmä. Polymeerimateriaaleina käytetään pääasiassa erilaisia kestomuoveja. Kuitumateriaaleina voidaan käyttää puujauhetta, sahanpurua, paperin- ja kartongin valmistuksessa käytettävää sellua, nanoselluloosaa tai muita puukuitumateriaaleja. Polaarisen puukuidun ja polaarittoman muovimateriaalin välinen materiaalien rajapinnan adheesio on yleensä riittämätöntä, mikä vaikuttaa lopputuotteen ominaisuuksien heikkenemiseen. Kyseinen ongelma on pyritty ratkaisemaan käyttämällä erilaisia kytkentäaineita. Tässä työssä keskitytään käsittelemään erilaisia puumuovikomposiittien kytkentäaineita, niiden toimintaa sekä vaikutuksia lopputuotteeseen. Lisäksi työssä esitellään myös puumuovikomposiittien valmistusmateriaaleja ja valmistusprosesseja.