932 resultados para Hydrological forecasting


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper discusses the observed and projected warming in the Caucasus region and its implications for glacier melt and runoff. A strong positive trend in summer air temperatures of 0.05 degrees C a(-1) is observed in the high-altitude areas providing for a strong glacier melt and continuous decline in glacier mass balance. A warming of 4-7 degrees C and 3-5 degrees C is projected for the summer months in 2071-2100 under the A2 and B2 emission scenarios respectively, suggesting that enhanced glacier melt can be expected. The expected changes in winter precipitation will not compensate for the summer melt and glacier retreat is likely to continue. However, a projected small increase in both winter and summer precipitation combined with the enhanced glacier melt will result in increased summer runoff in the currently glaciated region of the Caucasus (independent of whether the region is glaciated at the end of the twenty-first century) by more than 50% compared with the baseline period.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A seasonal forecasting system that is capable of skilfully predicting rainfall totals on a regional scale would be of great value to Ethiopia. Here, we describe how a statistical model can exploit the teleconnections described in part 1 of this pair of papers to develop such a system. We show that, in most cases, the predictors selected objectively by the statistical model can be interpreted in the light of physical teleconnections with Ethiopian rainfall, and discuss why, in some cases, unexpected regions are chosen as predictors. We show that the forecast has skill in all parts of Ethiopia, and argue that this method could provide the basis of an operational seasonal forecasting system for Ethiopia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study proposes an objective integrated seasonal forecasting system for producing well-calibrated probabilistic rainfall forecasts for South America. The proposed system has two components: ( i) an empirical model that uses Pacific and Atlantic sea surface temperature anomalies as predictors for rainfall and ( ii) a multimodel system composed of three European coupled ocean - atmosphere models. Three-month lead austral summer rainfall predictions produced by the components of the system are integrated ( i. e., combined and calibrated) using a Bayesian forecast assimilation procedure. The skill of empirical, coupled multimodel, and integrated forecasts obtained with forecast assimilation is assessed and compared. The simple coupled multimodel ensemble has a comparable level of skill to that obtained using a simplified empirical approach. As for most regions of the globe, seasonal forecast skill for South America is low. However, when empirical and coupled multimodel predictions are combined and calibrated using forecast assimilation, more skillful integrated forecasts are obtained than with either empirical or coupled multimodel predictions alone. Both the reliability and resolution of the forecasts have been improved by forecast assimilation in several regions of South America. The Tropics and the area of southern Brazil, Uruguay, Paraguay, and northern Argentina have been found to be the two most predictable regions of South America during the austral summer. Skillful rainfall forecasts are generally only possible during El Nino or La Nina years rather than in neutral years.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The performance of boreal winter forecasts made with the European Centre for Medium-Range Weather Forecasts (ECMWF) System 11 Seasonal Forecasting System is investigated through analyses of ensemble hindcasts for the period 1987-2001. The predictability, or signal-to-noise ratio, associated with the forecasts, and the forecast skill are examined. On average, forecasts of 500 hPa geopotential height (GPH) have skill in most of the Tropics and in a few regions of the extratropics. There is broad, but not perfect, agreement between regions of high predictability and regions of high skill. However, model errors are also identified, in particular regions where the forecast ensemble spread appears too small. For individual winters the information provided by t-values, a simple measure of the forecast signal-to-noise ratio, is investigated. For 2 m surface air temperature (T2m), highest t-values are found in the Tropics but there is considerable interannual variability, and in the tropical Atlantic and Indian basins this variability is not directly tied to the El Nino Southern Oscillation. For GPH there is also large interannual variability in t-values, but these variations cannot easily be predicted from the strength of the tropical sea-surface-temperature anomalies. It is argued that the t-values for 500 hPa GPH can give valuable insight into the oceanic forcing of the atmosphere that generates predictable signals in the model. Consequently, t-values may be a useful tool for understanding, at a mechanistic level, forecast successes and failures. Lastly, the extent to which t-values are useful as a predictor of forecast skill is investigated. For T2m, t-values provide a useful predictor of forecast skill in both the Tropics and extratropics. Except in the equatorial east Pacific, most of the information in t-values is associated with interannual variability of the ensemble-mean forecast rather than interannual variability of the ensemble spread. For GPH, however, t-values provide a useful predictor of forecast skill only in the tropical Pacific region.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global hydrological models (GHMs) model the land surface hydrologic dynamics of continental-scale river basins. Here we describe one such GHM, the Macro-scale - Probability-Distributed Moisture model.09 (Mac-PDM.09). The model has undergone a number of revisions since it was last applied in the hydrological literature. This paper serves to provide a detailed description of the latest version of the model. The main revisions include the following: (1) the ability for the model to be run for n repetitions, which provides more robust estimates of extreme hydrological behaviour, (2) the ability of the model to use a gridded field of coefficient of variation (CV) of daily rainfall for the stochastic disaggregation of monthly precipitation to daily precipitation, and (3) the model can now be forced with daily input climate data as well as monthly input climate data. We demonstrate the effects that each of these three revisions has on simulated runoff relative to before the revisions were applied. Importantly, we show that when Mac-PDM.09 is forced with monthly input data, it results in a negative runoff bias relative to when daily forcings are applied, for regions of the globe where the day-to-day variability in relative humidity is high. The runoff bias can be up to - 80% for a small selection of catchments but the absolute magnitude of the bias may be small. As such, we recommend future applications of Mac-PDM.09 that use monthly climate forcings acknowledge the bias as a limitation of the model. The performance of Mac-PDM.09 is evaluated by validating simulated runoff against observed runoff for 50 catchments. We also present a sensitivity analysis that demonstrates that simulated runoff is considerably more sensitive to method of PE calculation than to perturbations in soil moisture and field capacity parameters.