938 resultados para Hydraulic gates.
Resumo:
This study investigated the effect of cyclic wetting and drying on the backfill used in soil-bentonite (SB) cutoff walls. For this purpose, model SB vertical cutoff wall backfills were prepared comprising of a fine grained mortar sand and 2% bentonite (by total weight) and 4% bentonite (by total weight). Results of the study indicate that the volume change is influenced by the bentonite content, that is, the increase in volume change increased with increasing bentonite content.
Resumo:
The long-term performance of infrastructure depends on reliable and sustainable designs. Many of Pennsylvania’s streams experience sediment transport problems that increase maintenance costs and lower structural integrity of bridge crossings. A stream restoration project is one common mitigation measure used to correct such problems at bridge crossings. Specifically, in an attempt to alleviate aggradation problems with the Old Route 15 Bridge crossing on White Deer Creek, in White Deer, PA, two in-stream structures (rock cross vanes) and several bank stabilization features were installed along with a complete channel redevelopment. The objectives of this research were to characterize the hydraulic and sediment transport processes occurring at the White Deer Creek site, and to investigate, through physical and mathematical modeling, the use of instream restoration structures. The goal is to be able to use the results of this study to prevent aggradation or other sediment related problems in the vicinity of bridges through improved design considerations. Monitoring and modeling indicate that the study site on White Deer Creek is currently unstable, experiencing general channel down-cutting, bank erosion, and several local areas of increased aggradation and degradation of the channel bed. An in-stream structure installed upstream of the Old Route 15 Bridge failed by sediment burial caused by the high sediment load that White Deer Creek is transporting as well as the backwater effects caused by the bridge crossing. The in-stream structure installed downstream of the Old Route 15 Bridge is beginning to fail because of the alignment of the structure with the approach direction of flow from upstream of the restoration structure.
Resumo:
The development of the Marcellus Shale gas play in Pennsylvania and the northeastern United States has resulted in significant amounts of water and wastes transported by truck over roadways. This study used geographic information systems (GIS) to quantify truck travel distances via both the preferred routes (minimum distance while also favoring higher-order roads) as well as, where available, the likely actual distances for freshwater and waste transport between pertinent locations (e. g., gas wells, treatment facilities, freshwater sources). Results show that truck travel distances in the Susquehanna River Basin are greater than those used in prior life-cycle assessments of tight shale gas. When compared to likely actual transport distances, if policies were instituted to constrain truck travel to the closest destination and higher-order roads, transport mileage reductions of 40-80% could be realized. Using reasonable assumptions of current practices, greenhouse gas (GHG) emissions associated with water and waste hauling were calculated to be 70-157 MT CO2 eq per gas well. Furthermore, empty so-called backhaul trips, such as to freshwater withdrawal sites or returning from deep well injection sites, were found to increase emissions by an additional 30%, underscoring the importance of including return trips in the analysis. The results should inform future life-cycle assessments of tight shale gases in managed watersheds and help local and regional governments plan for impacts of transportation on local infrastructure. (C) 2013 American Society of Civil Engineers.
Resumo:
In this contribution the experiences with e-Learning 2.0 applications by using a Wiki for the education in hydraulic engineering are shown. Up to now important information for the students has been prepared by the instructor. For this project the students were asked to collaborate and search on their own for the information they needed. Therefore a Wiki-system was used. For the engineering practice a self dependent realisation of tasks is an important requirement which students should be prepared for. With the help of online communication there should be shown the possibilities for students for working together in an interdisciplinary team. The positive experiences as well as the results of the evaluation of this project plead for a continuation of the application of e-Learning 2.0 for education. The comparison of results of tests without using Wiki and with using Wiki shows a qualitative tendency of better marks. In this contribution we present the application of Wiki in hydraulic engineering but the results can also be used for other engineering disciplines.
Resumo:
The Assyrian capitals are not only known for their magnificent temples and palaces, but also for their monumental city walls. The most impressive and at the same time most delicate features of all the town defenses were the city gates. As they interrupted the line of defense, they were al-ways a vulnerable spot of every system of fortifications. However, the walled cities’ economic needs demanded these gateways to be built, in order to ensure the steady flow of goods and pro-visions. Apart from that, they also had a significant ideological meaning, which is emphasized by many cuneiform texts. During the excavations of the Assyrian capitals of Ashur, Dūr Šarrūkīn, and Nineveh, a fairly large number of Assyrian city gates were brought to light. By re-examining the archaeological reports and employing remote sensing, many details of these structures can still be revealed. The paper aims at illuminating the different considerations that went into constructing these gates, as well as the development Assyrian city gates underwent and what may have influenced this process.
Resumo:
We report the observation of possible (hydraulic) open-system pingos (OSPs ) at the mid latitudes (∼37°S) in and around the Argyre impact-basin. OSPs are perennial (water)–ice cored mounds; they originate and evolve in periglacial and pro-glacial landscapes on Earth where intra- or sub-permafrost water under hydraulic/artesian pressure uplifts localised sections of surface or near-surface permafrost that then freezes in-situ. We invoke three lines of evidence in support of our analogue-based interpretation: (1) similarities of shape, size and summit traits between terrestrial OSPs and the Martian mounds; (2) clustered distribution and the slope-side location of the mounds, consistent with terrestrial permafrost-environments where OSPs are found; and, (3) spatially-associated landforms putatively indicative of periglacial and glacial processes on Mars that characterise OSP landscapes on Earth. This article presents five OSP candidate-locations and nests these mound locations within a new geological map of the Argyre impact-basin and margins. It also presents three periglacial hypotheses about the possible origin of the water required to develop the mounds. Alternative (non-periglacial) formation-hypotheses also are considered; however, we show that their robustness is not equal to that of the periglacial ones.
Resumo:
Infiltration is dominantly gravity driven, and a viscous-flow approach was developed. Laminar film flow equilibrates gravity with the viscous force and a constant flow velocity evolves during a period lasting 3/2 times the duration of a constant input rate, qS. Film thickness F and the specific contact area L of the film per unit soil volume are the key parameters. Sprinkler irrigation produced in situ time series of volumetric water contents, θ(z,t), as determined with TDR probes. The wetting front velocity v and the time series of the mobile water content, w(z,t) were deduced from θ(z,t). In vitro steady flow in a core of saturated soil provided volume flux density, q(z,t), and flow velocity, v, as determined from a heat front velocity. The F and L parameters of the in situ and the in vitro experiments were compared. The macropore-flow restriction states that, for a particular permeable medium, the specific contact area L must be independent from qS i.e., dL/dqS = 0. If true, then the relationship of qS ∝ v3/2 could scale a wide range of input rates 0 ≤ qS ≤ saturated hydraulic conductivity, Ksat, into a permeable medium, and kinematic-wave theory would become a versatile tool to deal with non-equilibrium flow. The viscous-flow approach is based on hydromechanical principles similar to Darcy’s law, but currently it is not suited to deduce flow properties from specified individual spatial structures of permeable media.
Resumo:
Denitrification bioreactors, also known as woodchip bioreactors, are a new strategy for improving drainage water quality before these flows arrive at local streams, rivers, and lakes. A bioreactor is an excavated, woodchip-filled pit that is capable of supporting native microbes that convert nitrate in the drainage water to nitrogen gas. The idea of these edgeof-field treatment systems is still relatively new, meaning it is important for investigations to be made into how to design these “pits” and to determine how drainage water moves through the woodchips. Because the bioreactor at the ISU Northeast Research Farm (NERF) is one of the best monitored bioreactor sites in the state, it provided an ideal location to not only monitor bioreactor nitrate-reduction performance, but also to investigate design hydraulics.
Resumo:
The stress history, permeability, and compressibility of sediments from Demerara Rise recovered during Ocean Drilling Program Leg 207 were determined using one-dimensional incremental load consolidation and low-gradient flow pump permeability tests. Relationships among void ratio, effective stress, and hydraulic conductivity are presented for sampled lithologic units and used to reconstruct effective stress, permeability, and in situ void ratio profiles for a transect of three sites across Demerara Rise. Results confirm that a significant erosional event occurred on the northeastern flank of the rise during the late Miocene, resulting in the removal of ~220 m of upper Oligocene-Miocene deposits. Although Neogene and Paleogene sediments tend to be overconsolidated, Cretaceous sediments are normally consolidated to underconsolidated, suggesting the presence of overpressure. A pronounced drop in permeability occurs at the transition from the Cretaceous black shales into the overlying Maastrichtian-upper Paleocene chalks and clays. The development of a hydraulic seal at this boundary may be responsible for overpressure in the Cretaceous deposits, leading to the lower overconsolidation ratios of these sediments. Coupled with large regional variations in sediment thickness (overburden stresses), the higher permeability overpressured Cretaceous sediments represent a regional lateral fluid conduit on Demerara Rise, possibly venting methane-rich fluids where it outcrops on the margin's northeastern flank.
Resumo:
Understanding the role of fluids in active accretionary prisms requires quantitative knowledge of parameters such as permeability. We report here the results of permeability tests on four samples from Ocean Drilling Program Leg 190 at the Nankai Trough accretionary prism-two from Site 1173 and two from Site 1174. Volcanic ash is present in one of the samples; otherwise, the material is hemipelagic mud. A constant-rate-of-flow technique was used at various effective pressures and rates of flow. The permeability of the four samples ranges between 10**-15 and 10**-18 m**2, with the ash-bearing sample showing the highest values.