936 resultados para Hydraulic fracturing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biliary cast syndrome (BCS) is the presence of casts within the intrahepatic or extrahepatic biliary system after orthotopic liver transplantation. Our work compares two percutaneous methods for BCS treatment: the mechanical cast-extraction technique (MCE) versus the hydraulic cast-extraction (HCE) technique using a rheolytic system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experimental verification of matrix diffusion in crystalline rocks largely relies on indirect methods performed in the laboratory. Such methods are prone to perturbations of the rock samples by collection and preparation and therefore the laboratory-derived transport properties and fluid composition might not represent in situ conditions. We investigated the effects induced by the drilling process and natural rock stress release by mass balance considerations and sensitivity analysis of analytical out-diffusion data obtained from originally saturated, large-sized drillcore material from two locations drilled using traced drilling fluid. For in situ stress-released drillcores of quartz-monzodiorite composition from the Aspo HRL, Sweden, tracer mass balance considerations and 1D and 2D diffusion modelling consistently indicated a contamination of <1% of the original pore water. This chemically disturbed zone extends to a maximum of 0.1 mm into the drillcore (61.8 mm x 180.1 mm) corresponding to about 0.66% of the total pore volume (0.77 vol.%). In contrast, the combined effects of stress release and the drilling process, which have influenced granodioritic drillcore material from 560 m below surface at Forsmark. Sweden, resulted in a maximum contamination of the derived porewater Cl(-) concentration of about 8%. The mechanically disturbed zone with modified diffusion properties covers the outermost similar to 6 mm of the drillcore (50 mm x 189 mm), whereas the chemically disturbed zone extends to a maximum of 0.3 mm based on mass balance considerations, and to 0.15 mm to 0.2 mm into the drillcore based on fitting the observed tracer data. This corresponds to a maximum of 2.4% of the total pore volume (0.62 vol.%) being affected by the drilling-fluid contamination. The proportion of rock volume affected initially by drilling fluid or subsequently with experiment water during the laboratory diffusion and re-saturation experiments depends on the size of the drillcore material and will become larger the smaller the sample used for the experiment. The results are further in support of matrix diffusion taking place in the undisturbed matrix of crystalline rocks at least in the cm range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effect of cyclic wetting and drying on the backfill used in soil-bentonite (SB) cutoff walls. For this purpose, model SB vertical cutoff wall backfills were prepared comprising of a fine grained mortar sand and 2% bentonite (by total weight) and 4% bentonite (by total weight). Results of the study indicate that the volume change is influenced by the bentonite content, that is, the increase in volume change increased with increasing bentonite content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The long-term performance of infrastructure depends on reliable and sustainable designs. Many of Pennsylvania’s streams experience sediment transport problems that increase maintenance costs and lower structural integrity of bridge crossings. A stream restoration project is one common mitigation measure used to correct such problems at bridge crossings. Specifically, in an attempt to alleviate aggradation problems with the Old Route 15 Bridge crossing on White Deer Creek, in White Deer, PA, two in-stream structures (rock cross vanes) and several bank stabilization features were installed along with a complete channel redevelopment. The objectives of this research were to characterize the hydraulic and sediment transport processes occurring at the White Deer Creek site, and to investigate, through physical and mathematical modeling, the use of instream restoration structures. The goal is to be able to use the results of this study to prevent aggradation or other sediment related problems in the vicinity of bridges through improved design considerations. Monitoring and modeling indicate that the study site on White Deer Creek is currently unstable, experiencing general channel down-cutting, bank erosion, and several local areas of increased aggradation and degradation of the channel bed. An in-stream structure installed upstream of the Old Route 15 Bridge failed by sediment burial caused by the high sediment load that White Deer Creek is transporting as well as the backwater effects caused by the bridge crossing. The in-stream structure installed downstream of the Old Route 15 Bridge is beginning to fail because of the alignment of the structure with the approach direction of flow from upstream of the restoration structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On March 27, Kevin Knobloch, President of the Union of Concerned Scientists, delivered the 2012 Albert, Norma and Howard '77 Geller Endowed Lecture. The title is Science and Democracy in Turmoil: The Fracturing of a Great American Relationship, and the lecture was jointly sponsored by the Marsh and Mosakowski Institutes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this contribution the experiences with e-Learning 2.0 applications by using a Wiki for the education in hydraulic engineering are shown. Up to now important information for the students has been prepared by the instructor. For this project the students were asked to collaborate and search on their own for the information they needed. Therefore a Wiki-system was used. For the engineering practice a self dependent realisation of tasks is an important requirement which students should be prepared for. With the help of online communication there should be shown the possibilities for students for working together in an interdisciplinary team. The positive experiences as well as the results of the evaluation of this project plead for a continuation of the application of e-Learning 2.0 for education. The comparison of results of tests without using Wiki and with using Wiki shows a qualitative tendency of better marks. In this contribution we present the application of Wiki in hydraulic engineering but the results can also be used for other engineering disciplines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the observation of possible (hydraulic) open-system pingos (OSPs ) at the mid latitudes (∼37°S) in and around the Argyre impact-basin. OSPs are perennial (water)–ice cored mounds; they originate and evolve in periglacial and pro-glacial landscapes on Earth where intra- or sub-permafrost water under hydraulic/artesian pressure uplifts localised sections of surface or near-surface permafrost that then freezes in-situ. We invoke three lines of evidence in support of our analogue-based interpretation: (1) similarities of shape, size and summit traits between terrestrial OSPs and the Martian mounds; (2) clustered distribution and the slope-side location of the mounds, consistent with terrestrial permafrost-environments where OSPs are found; and, (3) spatially-associated landforms putatively indicative of periglacial and glacial processes on Mars that characterise OSP landscapes on Earth. This article presents five OSP candidate-locations and nests these mound locations within a new geological map of the Argyre impact-basin and margins. It also presents three periglacial hypotheses about the possible origin of the water required to develop the mounds. Alternative (non-periglacial) formation-hypotheses also are considered; however, we show that their robustness is not equal to that of the periglacial ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Al Shomou Silicilyte Member (Athel Formation) in the South Oman Salt Basin shares many of the characteristics of a light, tight-oil (LTO) reservoir: it is a prolifi c source rock mature for light oil, it produces light oil from a very tight matrix and reservoir, and hydraulic fracking technology is required to produce the oil. What is intriguing about the Al Shomou Silicilyte, and different from other LTO reservoirs, is its position related to the Precambrian/Cambrian Boundary (PCB) and the fact that it is a ‘laminated chert‘ rather than a shale. In an integrated diagenetic study we applied microstructural analyses (SEM, BSE) combined with state-of-the-art stable isotope and trace element analysis of the silicilyte matrix and fractures. Fluid inclusion microthermometry was applied to record the salinity and minimum trapping temperatures. The microstructural investigations reveal a fi ne lamination of the silicilyte matrix with a mean lamina thickness of ca. 20 μm consisting of predominantly organic matter-rich and fi nely crystalline quartz-rich layers, respectively. Authigenic, micron-sized idiomorphic quartz crystals are the main matrix components of the silicilyte. Other diagenetic phases are pyrite, apatite, dolomite, magnesite and barite cements. Porosity values based on neutron density logs and core plug data indicate porosity in the silicilyte ranges from less than 2% to almost to 40%. The majority of the pore space in the silicilyte is related to (primary) inter-crystalline pores, with locally important oversized secondary pores. Pore casts of the silica matrix show that pores are extremely irregular in three dimensions, and are generally interconnected by a complex web or meshwork of fi ne elongate pore throats. Mercury injection capillary data are in line with the microstructural observations suggesting two populations of pore throats, with an effective average modal diameter of 0.4 μm. The acquired geochemical data support the interpretation that the primary source of the silica is the ambient seawater rather than hydrothermal or biogenic. A maximum temperature of ca. 45°C for the formation of microcrystalline quartz in the silicilyte is good evidence that the lithifi cation and crystallization of quartz occurred in the fi rst 5 Ma after deposition. Several phases of brittle fracturing and mineralization occurred in response to salt tectonics during burial. The sequences of fracture-fi lling mineral phases (dolomite - layered chalcedony – quartz – apatite - magnesite I+II - barite – halite) indicates a complex fl uid evolution after silicilyte lithifi cation. Primary, all-liquid fl uid inclusions in the fracturefi lling quartz are good evidence of growth beginning at low temperatures, i.e. ≤ 50ºC. Continuous precipitation during increasing temperature and burial is documented by primary two-phase fl uid inclusions in quartz cements that show brines at 50°C and fi rst hydrocarbons at ca. 70°C. The absolute timing of each mineral phase can be constrained based on U-Pb geochronometry, and basin modelling. Secondary fl uid inclusions in quartz, magnesite and barite indicate reactivation of the fracture system after peak burial temperature during the major cooling event, i.e. uplift, between 450 and 310 Ma. A number of fi rst-order trends in porosity and reservoir-quality distribution are observed which are strongly related to the diagenetic and fl uid history of the reservoir: the early in-situ generation of hydrocarbons and overpressure development arrests diagenesis and preserves matrix porosity. Chemical compaction by pressure dissolution in the fl ank areas could be a valid hypothesis to explain the porosity variations in the silicilitye slabs resulting in lower porosity and poorer connectivity on the fl anks of the reservoir. Most of the hydrocarbon storage and production comes from intervals characterized by Amthor et al. 114488 preserved micropores, not hydrocarbon storage in a fracture system. The absence of oil expulsion results in present-day high oil saturations. The main diagenetic modifi cations of the silicilyte occurred and were completed relatively early in its history, i.e. before 300 Ma. An instrumental factor for preserving matrix porosity is the diffi culty for a given slab to evacuate all the fl uids (water and hydrocarbons), or in other words, the very good sealing capacity of the salt embedding the slab.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infiltration is dominantly gravity driven, and a viscous-flow approach was developed. Laminar film flow equilibrates gravity with the viscous force and a constant flow velocity evolves during a period lasting 3/2 times the duration of a constant input rate, qS. Film thickness F and the specific contact area L of the film per unit soil volume are the key parameters. Sprinkler irrigation produced in situ time series of volumetric water contents, θ(z,t), as determined with TDR probes. The wetting front velocity v and the time series of the mobile water content, w(z,t) were deduced from θ(z,t). In vitro steady flow in a core of saturated soil provided volume flux density, q(z,t), and flow velocity, v, as determined from a heat front velocity. The F and L parameters of the in situ and the in vitro experiments were compared. The macropore-flow restriction states that, for a particular permeable medium, the specific contact area L must be independent from qS i.e., dL/dqS = 0. If true, then the relationship of qS ∝ v3/2 could scale a wide range of input rates 0 ≤ qS ≤ saturated hydraulic conductivity, Ksat, into a permeable medium, and kinematic-wave theory would become a versatile tool to deal with non-equilibrium flow. The viscous-flow approach is based on hydromechanical principles similar to Darcy’s law, but currently it is not suited to deduce flow properties from specified individual spatial structures of permeable media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Denitrification bioreactors, also known as woodchip bioreactors, are a new strategy for improving drainage water quality before these flows arrive at local streams, rivers, and lakes. A bioreactor is an excavated, woodchip-filled pit that is capable of supporting native microbes that convert nitrate in the drainage water to nitrogen gas. The idea of these edgeof-field treatment systems is still relatively new, meaning it is important for investigations to be made into how to design these “pits” and to determine how drainage water moves through the woodchips. Because the bioreactor at the ISU Northeast Research Farm (NERF) is one of the best monitored bioreactor sites in the state, it provided an ideal location to not only monitor bioreactor nitrate-reduction performance, but also to investigate design hydraulics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stress history, permeability, and compressibility of sediments from Demerara Rise recovered during Ocean Drilling Program Leg 207 were determined using one-dimensional incremental load consolidation and low-gradient flow pump permeability tests. Relationships among void ratio, effective stress, and hydraulic conductivity are presented for sampled lithologic units and used to reconstruct effective stress, permeability, and in situ void ratio profiles for a transect of three sites across Demerara Rise. Results confirm that a significant erosional event occurred on the northeastern flank of the rise during the late Miocene, resulting in the removal of ~220 m of upper Oligocene-Miocene deposits. Although Neogene and Paleogene sediments tend to be overconsolidated, Cretaceous sediments are normally consolidated to underconsolidated, suggesting the presence of overpressure. A pronounced drop in permeability occurs at the transition from the Cretaceous black shales into the overlying Maastrichtian-upper Paleocene chalks and clays. The development of a hydraulic seal at this boundary may be responsible for overpressure in the Cretaceous deposits, leading to the lower overconsolidation ratios of these sediments. Coupled with large regional variations in sediment thickness (overburden stresses), the higher permeability overpressured Cretaceous sediments represent a regional lateral fluid conduit on Demerara Rise, possibly venting methane-rich fluids where it outcrops on the margin's northeastern flank.