857 resultados para High stability
Resumo:
International audience
Resumo:
Despite the tremendous application potentials of carbon nanotubes (CNTs) proposed by researchers in the last two decades, efficient experimental techniques and methods are still in need for controllable production of CNTs in large scale, and for conclusive characterizations of their properties in order to apply CNTs in high accuracy engineering. In this dissertation, horizontally well-aligned high quality single-walled carbon nanotubes (SWCNTs) have been successfully synthesized on St-cut quartz substrate by chemical vapor deposition (CVD). Effective radial moduli (Eradial) of these straight SWCNTs have been measured by using well-calibrated tapping mode and contact mode atomic force microscopy (AFM). It was found that the measured Eradial decreased from 57 to 9 GPa as the diameter of the SWCNTs increased from 0.92 to 1.91 nm. The experimental results were consistent with the recently reported theoretical simulation data. The method used in this mechanical property test can be easily applied to measure the mechanical properties of other low-dimension nanostructures, such as nanowires and nanodots. The characterized sample is also an ideal platform for electrochemical tests. The electrochemical activities of redox probes Fe(CN)63-/4-, Ru(NH3)63+, Ru(bpy)32+ and protein cytochrome c have been studied on these pristine thin films by using aligned SWCNTs as working electrodes. A simple and high performance electrochemical sensor was fabricated. Flow sensing capability of the device has been tested for detecting neurotransmitter dopamine at physiological conditions with the presence of Bovine serum albumin. Good sensitivity, fast response, high stability and anti-fouling capability were observed. Therefore, the fabricated sensor showed great potential for sensing applications in complicated solution.
Resumo:
A series of perovskite-like oxides LaCu1-xMxO3 (M=Mn, Ti; 0.0 ⩽ x ⩽ 0.8) was prepared by amorphous citrate decomposition and characterized by XRD, ICP-OES and XPS techniques. The catalysts were tested in the Fenton-like degradation of paracetamol with H2O2, under mild reaction conditions, 25 °C and nearly neutral pH. Values of decomposition of paracetamol between 80 and 97% at 300 min were achieved for most of samples. The presence of the Cu2+/Cu+ pair at the surface of the catalysts is necessary to carry out the reaction and the catalysts containing higher amount of copper at the surface, resulted to be more active. The leaching of metals was less than 1%, which discards the contribution of the homogenous Fenton-like reaction and remarks the high stability of the metals into the mixed oxide network. The catalytic activity of LaCu0.8Mn0.2O3 was maintained after three cycles of reaction, which proves the stability and reusability of the catalyst.
Resumo:
The ability to measure tiny variations in the local gravitational acceleration allows – amongst other applications – the detection of hidden hydrocarbon reserves, magma build-up before volcanic eruptions, and subterranean tunnels. Several technologies are available that achieve the sensitivities required (tens of μGal/√Hz), and stabilities required (periods of days to weeks) for such applications: free-fall gravimeters, spring-based gravimeters, superconducting gravimeters, and atom interferometers. All of these devices can observe the Earth tides; the elastic deformation of the Earth’s crust as a result of tidal forces. This is a universally predictable gravitational signal that requires both high sensitivity and high stability over timescales of several days to measure. All present gravimeters, however, have limitations of excessive cost (£70 k) and high mass (<8 kg). In this thesis, the building of a microelectromechanical system (MEMS) gravimeter with a sensitivity of 40 μGal/√Hz in a package size of only a few cubic centimetres is discussed. MEMS accelerometers – found in most smart phones – can be mass-produced remarkably cheaply, but most are not sensitive enough, and none have been stable enough to be called a ‘gravimeter’. The remarkable stability and sensitivity of the device is demonstrated with a measurement of the Earth tides. Such a measurement has never been undertaken with a MEMS device, and proves the long term stability of the instrument compared to any other MEMS device, making it the first MEMS accelerometer that can be classed as a gravimeter. This heralds a transformative step in MEMS accelerometer technology. Due to their small size and low cost, MEMS gravimeters could create a new paradigm in gravity mapping: exploration surveys could be carried out with drones instead of low-flying aircraft; they could be used for distributed land surveys in exploration settings, for the monitoring of volcanoes; or built into multi-pixel density contrast imaging arrays.
Resumo:
Transport related injury is a leading cause of death and disability for adolescents and represents a substantial burden on public health and the community as a whole. Adolescents appear to have a growing risk of harm due to the co-existence of increasing alcohol use and engagement in risky transport behaviours. Understanding more about the development and stability of these behaviours by young adolescents over time could be beneficial in targeting transport injury prevention interventions for high-risk adolescents. In Australia alcohol use begins to increase significantly through the early and middle adolescent years even though the majority of these young people are still in school. Aim This paper reports on changes over a six month period in alcohol use, anger management experiences and transport risk taking behaviours including riding a bicycle without a helmet and under-age driving for high-risk adolescents and non high-risk early adolescents. Year 9 students (N=1,005) from 20 schools in Queensland, Australia completed a baseline survey in the first half of 2012 and at a six month follow up. Respondents at both times were asked about their engagement in risk taking behaviours measured by Mak’s adolescent delinquency scale, which included five transport related items. They were also asked to rate their alcohol use for the preceding three month period. The stability of these risk taking indicators was measured by comparing baseline results with the six month follow up. Results High-risk adolescents were more likely to report change in their alcohol use and transport behaviours when compared with non high-risk adolescents over a six month period. There were no significant changes in control of anger for either group. Demographic characteristics were not shown to have any significant effect on the stability of risk indicators for high-risk adolescents and non high-risk adolescents. Differences were found in the stability of risk taking indicators for high-risk adolescents and non high-risk adolescents. The findings of this paper have implications in targeting transport risk behaviour change interventions to meet the needs of high-risk adolescents.
Resumo:
The integration of large amount of wind power into a power system imposes a new challenge for the secure and economic operation of the system. It is necessary to investigate the impacts of wind power generation on the dynamic behavior of the power system concerned. This paper investigates the impacts of large amount of wind power on small signal stability and the corresponding control strategies to mitigate the negative effects. The concepts of different types of wind turbine generators (WTGs) and the principles of the grid-connected structures of wind power generation systems are first briefly introduced. Then, the state-of-the-art of the studies on the impacts of WTGs on small signal stability as well as potential problems to be studied are clarified. Finally, the control strategies on WTGs to enhance power system damping characteristics are presented.
Resumo:
Small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS) measurements of the structure of two Australian bituminous coals (particle size of 1-0.5 mm) before, during, and after exposure to 155 bar of helium were made to identify any effects of pressure alone on the pore size distribution of coal and any irreversible effects upon exposure to high pressures of helium in the pore size range from 3 nm to 10 μm. No irreversible effects upon exposure were identified for any pore size. No effects of pressure on pore size distribution were observed, except for a small effect at a pore size of about 2 μm for one coal. This study provides a convenient baseline for SANS and USANS investigations on sorption of gases at elevated pressures on coals, by distinguishing between the effect of pressure alone on coal pore size distribution and against the effect of the gas to be investigated.
Resumo:
To produce commercially valuable ketocarotenoids in Solanum tuberosum, the 4, 4′ β-oxygenase (crtW) and 3, 3′ β-hydroxylase (crtZ) genes from Brevundimonas spp. have been expressed in the plant host under constitutive transcriptional control. The CRTW and CRTZ enzymes are capable of modifying endogenous plant carotenoids to form a range of hydroxylated and ketolated derivatives. The host (cv. Désirée) produced significant levels of nonendogenous carotenoid products in all tissues, but at the apparent expense of the economically critical metabolite, starch. Carotenoid levels increased in both wild-type and transgenic tubers following cold storage; however, stability during heat processing varied between compounds. Subcellular fractionation of leaf tissues revealed the presence of ketocarotenoids in thylakoid membranes, but not predominantly in the photosynthetic complexes. A dramatic increase in the carotenoid content of plastoglobuli was determined. These findings were corroborated by microscopic analysis of chloroplasts. In tuber tissues, esterified carotenoids, representing 13% of the total pigment found in wild-type extracts, were sequestered in plastoglobuli. In the transgenic tubers, this proportion increased to 45%, with esterified nonendogenous carotenoids in place of endogenous compounds. Conversely, nonesterified carotenoids in both wild-type and transgenic tuber tissues were associated with amyloplast membranes and starch granules.
Resumo:
Standard Gibbs energies of formation of oxysulfides of cerium and yttrium from their respective oxedes were determined using solid oxide galvanic cells incorporating calcia-stabilized zirconia as the electrolyte in the temperature range 870–1120 K. The sulfur potential over the electrode containing the oxide and oxysulfide was fixed by a buffer mixture of Ag + Ag2S. A small amount of CaH2 was added to the buffer to generate an equilibrium ratio of H2S and H2 species in a closed system containing the buffer and the electrode. The sulfur potential is transmitted to the electrode via the gas phase. The results can be summarized by the equations 2left angle bracketCeO2right-pointing angle bracket+1/2(S2)→left angle bracketCe2O2Sright-pointing angle bracket+(O2) ΔG°=430600−109·7T(±400)J mol−1 left angle bracketY2O3right-pointing angle bracket+1/2(S2)→left angle bracketY2O2Sright-pointing angle bracket+1/2(O2) ΔG°=114780−1·45T(±200)J mol−1 The values are compared with data reported in the literature. The stability field diagram for the Ce---O---S system has been developed using the results of this study for Ce2O2S and data for other phases from the literature.
Resumo:
Beta-Lactamase, which catalyzes beta-lactam antibiotics, is prototypical of large alpha/beta proteins with a scaffolding formed by strong noncovalent interactions. Experimentally, the enzyme is well characterized, and intermediates that are slightly less compact and having nearly the same content of secondary structure have been identified in the folding pathway. In the present study, high temperature molecular dynamics simulations have been carried out on the native enzyme in solution. Analysis of these results in terms of root mean square fluctuations in cartesian and [phi, psi] space, backbone dihedral angles and secondary structural hydrogen bonds forms the basis for an investigation of the topology of partially unfolded states of beta-lactamase. A differential stability has been observed for alpha-helices and beta-sheets upon thermal denaturation to putative unfolding intermediates. These observations contribute to an understanding of the folding/unfolding processes of beta-lactamases in particular, and other alpha/beta proteins in general.
Resumo:
The standard Gibbs free energy of formation of orthorhombic Ca2ZrSi4O12 from component oxides ZrO2 (monoclinic), CaO (rock salt), and SiO2 (quartz) has been determined in the temperature range 973 to 1273 K using a solid-state cell incorporating single-crystal CaF2 as the electrolyte: Delta G(f) degrees = -219930 + 11.77T (+/- 1500) J.mol(-1) This is the only quantitative information now available on the stability of Ca2ZrSi4O12.
Resumo:
Six new vesicle-forming, cationic surfactant lipids are synthesized. Four of them contain 'flat' aromatic units at different locations of hydrophobic segments. In order to estimate the influence of aromatic units in the lipid monomer two other surfactant lipids of related structure with n-butyloxy units in the places of aromatic groups were also prepared. Transmission electron microscopy confirmed the vesicular membrane formation from these newly synthesized lipids. DSC or temperature-dependent keto-enol tautomerism of benzoylacetanilide-doped vesicles reveal a remarkable increase in the thermal stability of the membranes formed from aromatic surfactant lipids in contradistinction to their counterparts that contain n-butyloxy units. The enhanced thermal stability originates presumably as a consequence of inter-monomer stacking.
Resumo:
The stability of the Hagen-Poiseuille flow of a Newtonian fluid in a tube of radius R surrounded by an incompressible viscoelastic medium of radius R < r < HR is analysed in the high Reynolds number regime. The dimensionless numbers that affect the fluid flow are the Reynolds number Re = (ρVR / η), the ratio of the viscosities of the wall and fluid ηr = (ηs/η), the ratio of radii H and the dimensionless velocity Γ = (ρV2/G)1/2. Here ρ is the density of the fluid, G is the coefficient of elasticity of the wall and Vis the maximum fluid velocity at the centre of the tube. In the high Reynolds number regime, an asymptotic expansion in the small parameter ε = (1/Re) is employed. In the leading approximation, the viscous effects are neglected and there is a balance between the inertial stresses in the fluid and the elastic stresses in the medium. There are multiple solutions for the leading-order growth rate do), all of which are imaginary, indicating that the fluctuations are neutrally stable, since there is no viscous dissipation of energy or transfer of energy from the mean flow to the fluctruations due to the Reynolds strees. There is an O(ε1/2) correction to the growth rate, s(1), due to the presence of a wall layer of thickness ε1/2R where the viscous stresses are O(ε1/2) smaller than the inertial stresses. An energy balance analysis indicates that the transfer of energy from the mean flow to the fluctuations due to the Reynolds stress in the wall layer is exactly cancelled by an opposite transfer of equal magnitude due to the deformation work done at the interface, and there is no net transfer from the mean flow to the fluctuations. Consequently, the fluctuations are stabilized by the viscous dissipation in the wall layer, and the real part of s(1) is negative. However, there are certain values of Γ and wavenumber k where s(l) = 0. At these points, the wail layer amplitude becomes zero because the tangential velocity boundary condition is identically satisfied by the inviscid flow solution. The real part of the O(ε) correction to the growth rate s(2) turns out to be negative at these points, indicating a small stabilizing effect due to the dissipation in the bulk of the fluid and the wall material. It is found that the minimum value of s(2) increases [is proportional to] (H − 1)−2 for (H − 1) [double less-than sign] 1 (thickness of wall much less than the tube radius), and decreases [is proportional to] (H−4 for H [dbl greater-than sign] 1. The damping rate for the inviscid modes is smaller than that for the viscous wall and centre modes in a rigid tube, which have been determined previously using a singular perturbation analysis. Therefore, these are the most unstable modes in the flow through a flexible tube.