921 resultados para High Power Laser Beam


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The peripheries of circular foils of 30 mm in diameter and 0.1 mm thick are fixed while their surfaces are subjected to a long pulsed laser over a central region that may vary from 2 mm to 6 mm in diameter. Failure is observed and classified into three stages; they are referred to as thermal bulging, localized shear deformation, and perforation by plugging. A distinct feature of the failure mode is that bulging and plugging occurred in the direction opposite to the incident laser beam. Such a phenomenon can be expected to occur for a laser intensity threshold value of about 0.61 x 10(6) W/cm(2) beyond which local melting of the material begins to take place.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to investigate the transient thermal stress field in wall-shape metal part during laser direct forming, a FEM model basing on ANSYS is established, and its algorithm is also dealt with. Calculation results show that while the wall-shape metal part is being deposited, in X direction, the thermal stress in the top layer of the wall-shape metal part is tensile stress and in the inner of the wall-shape metal part is compressive stress. The reason causing above-mentioned thermal stress status in the wall-shape metal part is illustrated, and the influence of the time and the processing parameters on the thermal stress field in wall-shape metal part is also studied. The calculation results are consistent with experimental results in tendency.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron acceleration in a tightly focused ultra-intensity linear polarized laser beam is investigated numerically. It has been found that the acceleration is strong phase dependent and is periodic to the variety of the initial laser field phase. When optimal initial parameters are chosen, the electron can be accelerated effectively. The accelerated electrons are emitted in pulses of which the full width is less than the half period of the laser field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron acceleration using a tightly focused ultraintensity laser beam is investigated numerically and strong phase dependence is found. The acceleration is periodic to the variety of the initial laser field phase, and the accelerated electrons are emitted in pulses of which the full width is the half period of the laser field. When a 10 PW intense laser beam is used, the electron with energy less than 1 Mev can be accelerated up to energies about 1.4 GeV. The optimal initial condition for electron acceleration is found. (C) 2005 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A scheme for electron self-injection in the laser wakefield acceleration is proposed. In this scheme, the transverse wave breaking of the wakefield and the tightly focused geometry of the laser beam play important roles. A large number of the background electrons are self-injected into the acceleration phase of the wakefield during the defocusing of the tightly focused laser beam as it propagates through an underdense plasma. Particle-in-cell simulations performed using a 2D3V code have shown generation of a collimated electron bunch with a total number of 1.4 x 109 and energies up to 8 MeV. (C) 2005 American Institute of Physics.