989 resultados para Higgs Physics
Resumo:
A search is reported for a neutral Higgs boson in the decay channel H → Zγ, Z → ℓ+ℓ− (ℓ = e, μ), using 4.5 fb−1 of pp collisions at √s = 7 TeV and 20.3 fb−1 of pp collisions at √s = 8 TeV, recorded by the ATLAS detector at the CERN Large Hadron Collider. The observed distribution of the invariantmass of the three final-state particles, mℓℓγ, is consistent with the Standard Model hypothesis in the investigated mass range of 120–150 GeV. For a Higgs boson with a mass of 125.5 GeV, the observed upper limit at the 95% confidence level is 11 times the Standard Model expectation. Upper limits are set on the cross section times branching ratio of a neutral Higgs boson with mass in the range 120–150 GeV between 0.13 and 0.5 pb for √s = 8 TeV at 95% confidence level.
Resumo:
The completion of the third-order QCD corrections to the inclusive top-pair production cross section near threshold demonstrates that the strong dynamics is under control at the few percent level. In this paper we consider the effects of the Higgs boson on the cross section and, for the first time, combine the third-order QCD result with the third-order P-wave, the leading QED and the leading non-resonant contributions. We study the size of the different effects and investigate the sensitivity of the cross section to variations of the top-quark Yukawa coupling due to possible new physics effects.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo:
Since it has been found that the MadGraph Monte Carlo generator offers superior flavour-matching capability as compared to Alpgen, the suitability of MadGraph for the generation of ttb¯ ¯b events is explored, with a view to simulating this background in searches for the Standard Model Higgs production and decay process ttH, H ¯ → b ¯b. Comparisons are performed between the output of MadGraph and that of Alpgen, showing that satisfactory agreement in their predictions can be obtained with the appropriate generator settings. A search for the Standard Model Higgs boson, produced in association with the top quark and decaying into a b ¯b pair, using 20.3 fb−1 of 8 TeV collision data collected in 2012 by the ATLAS experiment at CERN’s Large Hadron Collider, is presented. The GlaNtp analysis framework, together with the RooFit package and associated software, are used to obtain an expected 95% confidence-level limit of 4.2 +4.1 −2.0 times the Standard Model expectation, and the corresponding observed limit is found to be 5.9; this is within experimental uncertainty of the published result of the analysis performed by the ATLAS collaboration. A search for a heavy charged Higgs boson of mass mH± in the range 200 ≤ mH± /GeV ≤ 600, where the Higgs mediates the five-flavour beyond-theStandard-Model physics process gb → tH± → ttb, with one top quark decaying leptonically and the other decaying hadronically, is presented, using the 20.3 fb−1 8 TeV ATLAS data set. Upper limits on the product of the production cross-section and the branching ratio of the H± boson are computed for six mass points, and these are found to be compatible within experimental uncertainty with those obtained by the corresponding published ATLAS analysis.
Resumo:
Using a peculiar version of the SU(3)(L) circle times U(1)(N) electroweak model, we investigate the production of doubly charged Higgs boson at the Large Hadron Collider. Our results include branching ratio calculations for the doubly charged Higgs and for one of the neutral scalar bosons of the model. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The extreme sensitivity of the mass of the Higgs boson to quantum corrections from high mass states, makes it 'unnaturally' light in the standard model. This 'hierarchy problem' can be solved by symmetries, which predict new particles related, by the symmetry, to standard model fields. The Large Hadron Collider (LHC) can potentially discover these new particles, thereby finding the solution to the hierarchy problem. However, the dynamics of the Higgs boson is also sensitive to this new physics. We show that in many scenarios the Higgs can be a complementary and powerful probe of the hierarchy problem at the LHC and future colliders. If the top quark partners carry the color charge of the strong nuclear force, the production of Higgs pairs is affected. This effect is tightly correlated with single Higgs production, implying that only modest enhancements in di-Higgs production occur when the top partners are heavy. However, if the top partners are light, we show that di-Higgs production is a useful complementary probe to single Higgs production. We verify this result in the context of a simplified supersymmetric model. If the top partners do not carry color charge, their direct production is greatly reduced. Nevertheless, we show that such scenarios can be revealed through Higgs dynamics. We find that many color neutral frameworks leave observable traces in Higgs couplings, which, in some cases, may be the only way to probe these theories at the LHC. Some realizations of the color neutral framework also lead to exotic decays of the Higgs with displaced vertices. We show that these decays are so striking that the projected sensitivity for these searches, at hadron colliders, is comparable to that of searches for colored top partners. Taken together, these three case studies show the efficacy of the Higgs as a probe of naturalness.
Resumo:
In the first part of this thesis we search for beyond the Standard Model physics through the search for anomalous production of the Higgs boson using the razor kinematic variables. We search for anomalous Higgs boson production using proton-proton collisions at center of mass energy √s=8 TeV collected by the Compact Muon Solenoid experiment at the Large Hadron Collider corresponding to an integrated luminosity of 19.8 fb-1.
In the second part we present a novel method for using a quantum annealer to train a classifier to recognize events containing a Higgs boson decaying to two photons. We train that classifier using simulated proton-proton collisions at √s=8 TeV producing either a Standard Model Higgs boson decaying to two photons or a non-resonant Standard Model process that produces a two photon final state.
The production mechanisms of the Higgs boson are precisely predicted by the Standard Model based on its association with the mechanism of electroweak symmetry breaking. We measure the yield of Higgs bosons decaying to two photons in kinematic regions predicted to have very little contribution from a Standard Model Higgs boson and search for an excess of events, which would be evidence of either non-standard production or non-standard properties of the Higgs boson. We divide the events into disjoint categories based on kinematic properties and the presence of additional b-quarks produced in the collisions. In each of these disjoint categories, we use the razor kinematic variables to characterize events with topological configurations incompatible with typical configurations found from standard model production of the Higgs boson.
We observe an excess of events with di-photon invariant mass compatible with the Higgs boson mass and localized in a small region of the razor plane. We observe 5 events with a predicted background of 0.54 ± 0.28, which observation has a p-value of 10-3 and a local significance of 3.35σ. This background prediction comes from 0.48 predicted non-resonant background events and 0.07 predicted SM higgs boson events. We proceed to investigate the properties of this excess, finding that it provides a very compelling peak in the di-photon invariant mass distribution and is physically separated in the razor plane from predicted background. Using another method of measuring the background and significance of the excess, we find a 2.5σ deviation from the Standard Model hypothesis over a broader range of the razor plane.
In the second part of the thesis we transform the problem of training a classifier to distinguish events with a Higgs boson decaying to two photons from events with other sources of photon pairs into the Hamiltonian of a spin system, the ground state of which is the best classifier. We then use a quantum annealer to find the ground state of this Hamiltonian and train the classifier. We find that we are able to do this successfully in less than 400 annealing runs for a problem of median difficulty at the largest problem size considered. The networks trained in this manner exhibit good classification performance, competitive with the more complicated machine learning techniques, and are highly resistant to overtraining. We also find that the nature of the training gives access to additional solutions that can be used to improve the classification performance by up to 1.2% in some regions.
Resumo:
Using the generative processes developed over two stages of creative development and the performance of The Physics Project at the Loft at the Creative Industries Precinct at the Queensland University of Technology (QUT) from 5th – 8th April 2006 as a case study, this exegesis considers how the principles of contemporary physics can be reframed as aesthetic principles in the creation of contemporary performance. The Physics Project is an original performance work that melds live performance, video and web-casting and overlaps an exploration of personal identity with the physics of space, time, light and complementarity. It considers the acts of translation between the language of physics and the language of contemporary performance that occur via process and form. This exegesis also examines the devices in contemporary performance making and contemporary performance that extend the reach of the performance, including the integration of the live and the mediated and the use of metanarratives.
Resumo:
This paper explains, somewhat along a Simmelian line, that political theory may produce practical and universal theories like those developed in theoretical physics. The reasoning behind this paper is to show that the Element of Democracy Theory may be true by way of comparing it to Einstein’s Special Relativity – specifically concerning the parameters of symmetry, unification, simplicity, and utility. These parameters are what make a theory in physics as meeting them not only fits with current knowledge, but also produces paths towards testing (application). As the Element of Democracy Theory meets these same parameters, it could settle the debate concerning the definition of democracy. This will be shown firstly by discussing why no one has yet achieved a universal definition of democracy; secondly by explaining the parameters chosen (as in why these and not others confirm or scuttle theories); and thirdly by comparing how Special Relativity and the Element of Democracy match the parameters.
Resumo:
This paper explains, somewhat along a Simmelian line, that political theory may produce practical and universal theories like those developed in theoretical physics. The reasoning behind this paper is to show that the Element of Democracy Theory may be true by way of comparing it to Einstein’s Special Relativity – specifically concerning the parameters of symmetry, unification, simplicity, and utility. These parameters are what make a theory in physics as meeting them not only fits with current knowledge, but also produces paths towards testing (application). As the Element of Democracy Theory meets these same parameters, it could settle the debate concerning the definition of democracy. This will be shown firstly by discussing why no one has yet achieved a universal definition of democracy; secondly by explaining the parameters chosen (as in why these and not others confirm or scuttle theories); and thirdly by comparing how Special Relativity and the Element of Democracy match the parameters.
Resumo:
a presentation about immersive visualised simulation systems, image analysis and GPGPU Techonology
The effects of implementing an innovative assessment program in senior school physics : a case study