948 resultados para Hierarchical partitioning analysis
Resumo:
OBJECTIVE: Meta-analysis of studies of the accuracy of diagnostic tests currently uses a variety of methods. Statistically rigorous hierarchical models require expertise and sophisticated software. We assessed whether any of the simpler methods can in practice give adequately accurate and reliable results. STUDY DESIGN AND SETTING: We reviewed six methods for meta-analysis of diagnostic accuracy: four simple commonly used methods (simple pooling, separate random-effects meta-analyses of sensitivity and specificity, separate meta-analyses of positive and negative likelihood ratios, and the Littenberg-Moses summary receiver operating characteristic [ROC] curve) and two more statistically rigorous approaches using hierarchical models (bivariate random-effects meta-analysis and hierarchical summary ROC curve analysis). We applied the methods to data from a sample of eight systematic reviews chosen to illustrate a variety of patterns of results. RESULTS: In each meta-analysis, there was substantial heterogeneity between the results of different studies. Simple pooling of results gave misleading summary estimates of sensitivity and specificity in some meta-analyses, and the Littenberg-Moses method produced summary ROC curves that diverged from those produced by more rigorous methods in some situations. CONCLUSION: The closely related hierarchical summary ROC curve or bivariate models should be used as the standard method for meta-analysis of diagnostic accuracy.
Resumo:
In numerous intervention studies and education field trials, random assignment to treatment occurs in clusters rather than at the level of observation. This departure of random assignment of units may be due to logistics, political feasibility, or ecological validity. Data within the same cluster or grouping are often correlated. Application of traditional regression techniques, which assume independence between observations, to clustered data produce consistent parameter estimates. However such estimators are often inefficient as compared to methods which incorporate the clustered nature of the data into the estimation procedure (Neuhaus 1993).1 Multilevel models, also known as random effects or random components models, can be used to account for the clustering of data by estimating higher level, or group, as well as lower level, or individual variation. Designing a study, in which the unit of observation is nested within higher level groupings, requires the determination of sample sizes at each level. This study investigates the design and analysis of various sampling strategies for a 3-level repeated measures design on the parameter estimates when the outcome variable of interest follows a Poisson distribution. ^ Results study suggest that second order PQL estimation produces the least biased estimates in the 3-level multilevel Poisson model followed by first order PQL and then second and first order MQL. The MQL estimates of both fixed and random parameters are generally satisfactory when the level 2 and level 3 variation is less than 0.10. However, as the higher level error variance increases, the MQL estimates become increasingly biased. If convergence of the estimation algorithm is not obtained by PQL procedure and higher level error variance is large, the estimates may be significantly biased. In this case bias correction techniques such as bootstrapping should be considered as an alternative procedure. For larger sample sizes, those structures with 20 or more units sampled at levels with normally distributed random errors produced more stable estimates with less sampling variance than structures with an increased number of level 1 units. For small sample sizes, sampling fewer units at the level with Poisson variation produces less sampling variation, however this criterion is no longer important when sample sizes are large. ^ 1Neuhaus J (1993). “Estimation efficiency and Tests of Covariate Effects with Clustered Binary Data”. Biometrics , 49, 989–996^
Resumo:
Most statistical analysis, theory and practice, is concerned with static models; models with a proposed set of parameters whose values are fixed across observational units. Static models implicitly assume that the quantified relationships remain the same across the design space of the data. While this is reasonable under many circumstances this can be a dangerous assumption when dealing with sequentially ordered data. The mere passage of time always brings fresh considerations and the interrelationships among parameters, or subsets of parameters, may need to be continually revised. ^ When data are gathered sequentially dynamic interim monitoring may be useful as new subject-specific parameters are introduced with each new observational unit. Sequential imputation via dynamic hierarchical models is an efficient strategy for handling missing data and analyzing longitudinal studies. Dynamic conditional independence models offers a flexible framework that exploits the Bayesian updating scheme for capturing the evolution of both the population and individual effects over time. While static models often describe aggregate information well they often do not reflect conflicts in the information at the individual level. Dynamic models prove advantageous over static models in capturing both individual and aggregate trends. Computations for such models can be carried out via the Gibbs sampler. An application using a small sample repeated measures normally distributed growth curve data is presented. ^
Resumo:
Includes bibliographical references (p. 56-57).
Resumo:
In data mining, efforts have focused on finding methods for efficient and effective cluster analysis in large databases. Active themes of research focus on the scalability of clustering methods, the effectiveness of methods for clustering complex shapes and types of data, high-dimensional clustering techniques, and methods for clustering mixed numerical and categorical data in large databases. One of the most accuracy approach based on dynamic modeling of cluster similarity is called Chameleon. In this paper we present a modified hierarchical clustering algorithm that used the main idea of Chameleon and the effectiveness of suggested approach will be demonstrated by the experimental results.
Resumo:
Virtual topology operations have been utilized to generate an analysis topology definition suitable for downstream mesh generation. Detailed descriptions are provided for virtual topology merge and split operations for all topological entities. Current virtual topology technology is extended to allow the virtual partitioning of volume cells and the topological queries required to carry out each operation are provided. Virtual representations are robustly linked to the underlying geometric definition through an analysis topology. The analysis topology and all associated virtual and topological dependencies are automatically updated after each virtual operation, providing the link to the underlying CAD geometry. Therefore, a valid description of the analysis topology, including relative orientations, is maintained. This enables downstream operations, such as the merging or partitioning of virtual entities, and interrogations, such as determining if a specific meshing strategy can be applied to the virtual volume cells, to be performed on the analysis topology description. As the virtual representation is a non-manifold description of the sub-divided domain the interfaces between cells are recorded automatically. This enables the advantages of non-manifold modelling to be exploited within the manifold modelling environment of a major commercial CAD system, without any adaptation of the underlying CAD model. A hierarchical virtual structure is maintained where virtual entities are merged or partitioned. This has a major benefit over existing solutions as the virtual dependencies are stored in an open and accessible manner, providing the analyst with the freedom to create, modify and edit the analysis topology in any preferred sequence, whilst the original CAD geometry is not disturbed. Robust definitions of the topological and virtual dependencies enable the same virtual topology definitions to be accessed, interrogated and manipulated within multiple different CAD packages and linked to the underlying geometry.
Resumo:
Safety on public transport is a major concern for the relevant authorities. We
address this issue by proposing an automated surveillance platform which combines data from video, infrared and pressure sensors. Data homogenisation and integration is achieved by a distributed architecture based on communication middleware that resolves interconnection issues, thereby enabling data modelling. A common-sense knowledge base models and encodes knowledge about public-transport platforms and the actions and activities of passengers. Trajectory data from passengers is modelled as a time-series of human activities. Common-sense knowledge and rules are then applied to detect inconsistencies or errors in the data interpretation. Lastly, the rationality that characterises human behaviour is also captured here through a bottom-up Hierarchical Task Network planner that, along with common-sense, corrects misinterpretations to explain passenger behaviour. The system is validated using a simulated bus saloon scenario as a case-study. Eighteen video sequences were recorded with up to six passengers. Four metrics were used to evaluate performance. The system, with an accuracy greater than 90% for each of the four metrics, was found to outperform a rule-base system and a system containing planning alone.
Resumo:
En este trabajo se propone un nuevo sistema híbrido para el análisis de sentimientos en clase múltiple basado en el uso del diccionario General Inquirer (GI) y un enfoque jerárquico del clasificador Logistic Model Tree (LMT). Este nuevo sistema se compone de tres capas, la capa bipolar (BL) que consta de un LMT (LMT-1) para la clasificación de la polaridad de sentimientos, mientras que la segunda capa es la capa de la Intensidad (IL) y comprende dos LMTs (LMT-2 y LMT3) para detectar por separado tres intensidades de sentimientos positivos y tres intensidades de sentimientos negativos. Sólo en la fase de construcción, la capa de Agrupación (GL) se utiliza para agrupar las instancias positivas y negativas mediante el empleo de 2 k-means, respectivamente. En la fase de Pre-procesamiento, los textos son segmentados por palabras que son etiquetadas, reducidas a sus raíces y sometidas finalmente al diccionario GI con el objetivo de contar y etiquetar sólo los verbos, los sustantivos, los adjetivos y los adverbios con 24 marcadores que se utilizan luego para calcular los vectores de características. En la fase de Clasificación de Sentimientos, los vectores de características se introducen primero al LMT-1, a continuación, se agrupan en GL según la etiqueta de clase, después se etiquetan estos grupos de forma manual, y finalmente las instancias positivas son introducidas a LMT-2 y las instancias negativas a LMT-3. Los tres árboles están entrenados y evaluados usando las bases de datos Movie Review y SenTube con validación cruzada estratificada de 10-pliegues. LMT-1 produce un árbol de 48 hojas y 95 de tamaño, con 90,88% de exactitud, mientras que tanto LMT-2 y LMT-3 proporcionan dos árboles de una hoja y uno de tamaño, con 99,28% y 99,37% de exactitud,respectivamente. Los experimentos muestran que la metodología de clasificación jerárquica propuesta da un mejor rendimiento en comparación con otros enfoques prevalecientes.
Resumo:
In this work we compare Grapholita molesta Busck (Lepidoptera: Tortricidae) populations originated from Brazil, Chile, Spain, Italy and Greece using power spectral density and phylogenetic analysis to detect any similarities between the population macro- and the molecular micro-level. Log-transformed population data were normalized and AR(p) models were developed to generate for each case population time series of equal lengths. The time-frequency/scale properties of the population data were further analyzed using wavelet analysis to detect any population dynamics frequency changes and cluster the populations. Based on the power spectral of each population time series and the hierarchical clustering schemes, populations originated from Southern America (Brazil and Chile) exhibit similar rhythmic properties and are both closer related with populations originated from Greece. Populations from Spain and especially Italy, have higher distance by terms of periodic changes on their population dynamics. Moreover, the members within the same cluster share similar spectral information, therefore they are supposed to participate in the same temporally regulated population process. On the contrary, the phylogenetic approach revealed a less structured pattern that bears indications of panmixia, as the two clusters contain individuals from both Europe and South America. This preliminary outcome will be further assessed by incorporating more individuals and likely employed a second molecular marker.
Resumo:
A chemotaxonomic analysis is described of a database containing various types of compounds from the Heliantheae tribe (Asteraceae) using Self-Organizing Maps (SOM). The numbers of occurrences of 9 chemical classes in different taxa of the tribe were used as variables. The study shows that SOM applied to chemical data can contribute to differentiate genera, subtribes, and groups of subtribes (subtribe branches), as well as to tribal and subtribal classifications of Heliantheae, exhibiting a high hit percentage comparable to that of an expert performance, and in agreement with the previous tribe classification proposed by Stuessy.
Resumo:
We analyze the influence of time-, firm-, industry- and country-level determinants of capital structure. First, we apply hierarchical linear modeling in order to assess the relative importance of those levels. We find that time and firm levels explain 78% of firm leverage. Second, we include random intercepts and random coefficients in order to analyze the direct and indirect influences of firm/industry/country characteristics on firm leverage. We document several important indirect influences of variables at industry and country-levels on firm determinants of leverage, as well as several structural differences in the financial behavior between firms of developed and emerging countries. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Understanding the mating patterns of populations of tree species is a key component of ex situ genetic conservation. In this study, we analysed the genetic diversity, spatial genetic structure (SGS) and mating system at the hierarchical levels of fruits and individuals as well as pollen dispersal patterns in a continuous population of Theobroma cacao in Para State, Brazil. A total of 156 individuals in a 0.56 ha plot were mapped and genotyped for nine microsatellite loci. For the mating system analyses, 50 seeds were collected from nine seed trees by sampling five fruits per tree (10 seeds per fruit). Among the 156 individuals, 127 had unique multilocus genotypes, and the remaining were clones. The population was spatially aggregated; it demonstrated a significant SGS up to 15m that could be attributed primarily to the presence of clones. However, the short seed dispersal distance also contributed to this pattern. Population matings occurred mainly via outcrossing, but selfing was observed in some seed trees, which indicated the presence of individual variation for self-incompatibility. The matings were also correlated, especially within ((r) over cap (p(m)) = 0.607) rather than among the fruits ((r) over cap (p(m)) = 0.099), which suggested that a small number of pollen donors fertilised each fruit. The paternity analysis suggested a high proportion of pollen migration (61.3%), although within the plot, most of the pollen dispersal encompassed short distances (28m). The determination of these novel parameters provides the fundamental information required to establish long-term ex situ conservation strategies for this important tropical species. Heredity (2011) 106, 973-985; doi:10.1038/hdy.2010.145; published online 8 December 2010
Resumo:
The critically endangered black-faced lion tamarin, Leontopithecus caissara, has a restricted geographical distribution consisting of small mainland and island populations, each with distinct habitats in coastal southeastern Brazil. Necessary conservation management actions require an assessment of whether differences in habitats are reflected in use of space by the species. We studied two tamarin groups on the mainland at Sao Paulo state between August 2005 and March 2007, and compared the results with data from Superagui Island. Three home range estimators were used: minimum convex polygon (MCP), Kernel, and the new technique presented dissolved monthly polygons (DMP). These resulted, respectively, in home ranges of 345, 297, and 282 ha for the 12-month duration of the study. Spatial overlap of mainland groups was extensive, whereas temporal overlap was not, a pattern that indicates resource partitioning is an important strategy to avoid intraspecific competition. L. caissara large home ranges seem to be dynamic, with constant incorporation of new areas and abandonment of others through time. The main difference between mainland and island groups is the amount and variety of sleeping sites. A better understanding of the home range sizes, day range lengths, and territorial behavior of this species will aid in developing better management strategies for its protection. Additionally, the presented DMP protocol is a useful improvement over the MCP method as it results in more realistic home range sizes for wildlife species. Am. J. Primatol. 73: 1114-1126, 2011. (C) 2011 Wiley Periodicals, Inc.