814 resultados para Hierarchical clustering model
Resumo:
This research investigates the interrelationship between service characteristics and switching costs and makes two contributions to the service retailing literature: (1) As a means of better understanding the effectiveness of switching costs, the study suggests a two-dimensional typology of switching costs, including internal and external switching costs and (2) it reveals that the effect of these switching costs on customer loyalty is contingent upon four service characteristics (the IHIP characteristics of service). We carried out a meta-analytic review of the literature on the switching costs-customer loyalty link and created a hierarchical linear model using a sample of 1,694 customers from 51 service industries. Results reveal that external switching costs have a stronger average effect on customer loyalty than do internal switching costs. Moreover, we find that IHIP characteristics moderate the links between switching costs and customer loyalty. Thus, the link between external switching costs and customer loyalty is weaker in industries higher in the four service characteristics (as compared to industries lower in these characteristics), while the opposite moderating effect of service characteristics for the internal switching costs-loyalty link is noted. © 2014 New York University.
Resumo:
We investigated the diversity pattern of nine Swiss stone pine (Pinus cembra L.) populations along the Carpathian range including the High Tatras, by using six chloroplast DNA microsatellites (cpSSR). Our aim was to detect genetically distinct regions by clustering of populations, and to tackle possible historical colonization routes. Our analysis referred to an investigated geographical range with the two most distant populations situated at about 500 air km. We found that the most diverse populations are situated at the two edges of the investigated part, in the Retezat Mts. (South Carpathians) and the High Tatras, and diversity decreases towards the populations of the Eastern Carpathians. Hierarchical clustering and NMDS revealed that the populations of the South Carpathians with the Tatras form a distinct cluster, significantly separated from those of the Eastern Carpathians. Moreover, based on the most variable chloroplast microsatellites, the four populations of the two range edges are not significantly different. Our results, supported also by palynological and late glacial macrofossil evidences, indicate refugial territories within the Retezat Mts. that conserved rich haplotype composition. From this refugial territory Pinus cembra might have colonized the Eastern Carpathians, and this was accompanied by a gradual decrease in population diversity. Populations of the High Tatras might have had the same role in the colonizing events of the Carpathians, as positive correlation was detected among populations lying from each other at a distance of 280 km, the maximum distance between neighbouring populations.
Resumo:
Az egyes nemzetek számviteli szabályozásának vizsgálatánál az adott ország sajátosságaiból eredően részben eltérő szabályozások alakultak ki. Az induktív megközelítésű vizsgálatok jellemzően a szabályozási kérdések széles körét fogják át, de csak néhány tényező mentén közelítve. A cash flow-kimutatások témakörénél a legtöbbször csak azt nézték, hogy van-e előírás a kimutatás elkészítésére, de a részletekkel már kevésbé foglalkoztak. Ebből adódóan e területen viszonylag kis különbséget mutattak ki ezek a felmérések. A szerző kutatása szerint a nemzeti cash flow-kimutatások szabályozásának részleteiben eltérések tapasztalhatók, és ezek alapján a nemzetek klaszterelemzéssel hierarchikusan csoportokba rendezhetők. _____ Research has found that as a result of their particularities, different countries have established partly different accounting frameworks. Studies with inductive approaches typically encompass a wide range of regulatory issues, but based on a limited number of factors only. In the case of Statements of Cash Flows, most studies have so far only examined the existence of rules governing the presentation of the statement, without an in-depth analysis of the details. Therefore, these studies only found relatively minor differences in this field. The author’s research shows that many differences exist in the details of national Cash Flow Statement regulations, which makes it possible to classify the countries in groups using the method of hierarchical clustering.
Resumo:
This dissertation studied the determinants and consequences of corporate reputation. It explored how firm-, industry-, and country-level factors influence the general public’s assessment of a firm’s reputation and how this reputation assessment impacted the firm’s strategic actions and organizational outcomes. The three empirical essays are grounded on separate theoretical paradigms in strategy, organizational theory, and corporate governance. The first essay used signaling theory to investigate firm-, industry-, and country-level determinants of individual-level corporate reputation assessments. Using a hierarchical linear model, it tested the theory based on individual evaluations of the largest companies across countries. Results indicated that variables at multiple analysis levels simultaneously impact individual level reputation assessments. Interactions were also found between industry- and country-level factors. Results confirmed the multi-level nature of signaling influences on reputation assessments. Building on a stakeholder-power approach to corporate governance, the second essay studied how differences in the power and preferences of three stakeholder groups—shareholders, creditors, and workers—across countries influence the general public’s reputation assessments of corporations. Examining the largest companies across countries, the study found that while the influence of stock market return is stronger in societies where shareholders have more power, social performance has a more significant role in shaping reputation evaluations in societies with stronger labor rights. Unexpectedly, when creditors have greater power, the influence of financial stability on reputation assessment becomes weaker. Exploring the consequences of reputation, the third essay investigated the specific effects of intangible assets on strategic actions and organizational outcomes. Particularly, it individually studied the impacts of acquirer acquisition experience, corporate reputation, and approach toward social responsibilities as well as their combined effect on market reactions to acquisition announcements. Using an event study of acquisition announcements, it confirmed the significant impacts of both action-specific (acquisition experience) and general (reputation and social performance) intangible assets on market expectations of acquisition outcomes. Moreover, the analysis demonstrated that reputation magnifies the impact of acquisition experience on market response to acquisition announcements. In conclusion, this dissertation tried to advance and extend the application of management and organizational theories by explaining the mechanisms underlying antecedents and consequences of corporate reputation.
Biogeochemical Classification of South Florida’s Estuarine and Coastal Waters of Tropical Seagrasses
Resumo:
South Florida’s watersheds have endured a century of urban and agricultural development and disruption of their hydrology. Spatial characterization of South Florida’s estuarine and coastal waters is important to Everglades’ restoration programs. We applied Factor Analysis and Hierarchical Clustering of water quality data in tandem to characterize and spatially subdivide South Florida’s coastal and estuarine waters. Segmentation rendered forty-four biogeochemically distinct water bodies whose spatial distribution is closely linked to geomorphology, circulation, benthic community pattern, and to water management. This segmentation has been adopted with minor changes by federal and state environmental agencies to derive numeric nutrient criteria.
Resumo:
As the Web evolves unexpectedly fast, information grows explosively. Useful resources become more and more difficult to find because of their dynamic and unstructured characteristics. A vertical search engine is designed and implemented towards a specific domain. Instead of processing the giant volume of miscellaneous information distributed in the Web, a vertical search engine targets at identifying relevant information in specific domains or topics and eventually provides users with up-to-date information, highly focused insights and actionable knowledge representation. As the mobile device gets more popular, the nature of the search is changing. So, acquiring information on a mobile device poses unique requirements on traditional search engines, which will potentially change every feature they used to have. To summarize, users are strongly expecting search engines that can satisfy their individual information needs, adapt their current situation, and present highly personalized search results. ^ In my research, the next generation vertical search engine means to utilize and enrich existing domain information to close the loop of vertical search engine's system that mutually facilitate knowledge discovering, actionable information extraction, and user interests modeling and recommendation. I investigate three problems in which domain taxonomy plays an important role, including taxonomy generation using a vertical search engine, actionable information extraction based on domain taxonomy, and the use of ensemble taxonomy to catch user's interests. As the fundamental theory, ultra-metric, dendrogram, and hierarchical clustering are intensively discussed. Methods on taxonomy generation using my research on hierarchical clustering are developed. The related vertical search engine techniques are practically used in Disaster Management Domain. Especially, three disaster information management systems are developed and represented as real use cases of my research work.^
Resumo:
As the Web evolves unexpectedly fast, information grows explosively. Useful resources become more and more difficult to find because of their dynamic and unstructured characteristics. A vertical search engine is designed and implemented towards a specific domain. Instead of processing the giant volume of miscellaneous information distributed in the Web, a vertical search engine targets at identifying relevant information in specific domains or topics and eventually provides users with up-to-date information, highly focused insights and actionable knowledge representation. As the mobile device gets more popular, the nature of the search is changing. So, acquiring information on a mobile device poses unique requirements on traditional search engines, which will potentially change every feature they used to have. To summarize, users are strongly expecting search engines that can satisfy their individual information needs, adapt their current situation, and present highly personalized search results. In my research, the next generation vertical search engine means to utilize and enrich existing domain information to close the loop of vertical search engine's system that mutually facilitate knowledge discovering, actionable information extraction, and user interests modeling and recommendation. I investigate three problems in which domain taxonomy plays an important role, including taxonomy generation using a vertical search engine, actionable information extraction based on domain taxonomy, and the use of ensemble taxonomy to catch user's interests. As the fundamental theory, ultra-metric, dendrogram, and hierarchical clustering are intensively discussed. Methods on taxonomy generation using my research on hierarchical clustering are developed. The related vertical search engine techniques are practically used in Disaster Management Domain. Especially, three disaster information management systems are developed and represented as real use cases of my research work.
Resumo:
To define specific pathways important in the multistep transformation process of normal plasma cells (PCs) to monoclonal gammopathy of uncertain significance (MGUS) and multiple myeloma (MM), we have applied microarray analysis to PCs from 5 healthy donors (N), 7 patients with MGUS, and 24 patients with newly diagnosed MM. Unsupervised hierarchical clustering using 125 genes with a large variation across all samples defined 2 groups: N and MGUS/MM. Supervised analysis identified 263 genes differentially expressed between N and MGUS and 380 genes differentially expressed between N and MM, 197 of which were also differentially regulated between N and MGUS. Only 74 genes were differentially expressed between MGUS and MM samples, indicating that the differences between MGUS and MM are smaller than those between N and MM or N and MGUS. Differentially expressed genes included oncogenes/tumor-suppressor genes (LAF4, RB1, and disabled homolog 2), cell-signaling genes (RAS family members, B-cell signaling and NF-kappaB genes), DNA-binding and transcription-factor genes (XBP1, zinc finger proteins, forkhead box, and ring finger proteins), and developmental genes (WNT and SHH pathways). Understanding the molecular pathogenesis of MM by gene expression profiling has demonstrated sequential genetic changes from N to malignant PCs and highlighted important pathways involved in the transformation of MGUS to MM.
Resumo:
Background: Athletic groin pain (AGP) is prevalent in sports involving repeated accelerations, decelerations, kicking and change-of-direction movements. Clinical and radiological examinations lack the ability to assess pathomechanics of AGP, but three-dimensional biomechanical movement analysis may be an important innovation. Aim: The primary aim was to describe and analyse movements used by patients with AGP during a maximum effort change-of-direction task. The secondary aim was to determine if specific anatomical diagnoses were related to a distinct movement strategy. Methods: 322 athletes with a current symptom of chronic AGP participated. Structured and standardised clinical assessments and radiological examinations were performed on all participants. Additionally, each participant performed multiple repetitions of a planned maximum effort change-of-direction task during which whole body kinematics were recorded. Kinematic and kinetic data were examined using continuous waveform analysis techniques in combination with a subgroup design that used gap statistic and hierarchical clustering. Results: Three subgroups (clusters) were identified. Kinematic and kinetic measures of the clusters differed strongly in patterns observed in thorax, pelvis, hip, knee and ankle. Cluster 1 (40%) was characterised by increased ankle eversion, external rotation and knee internal rotation and greater knee work. Cluster 2 (15%) was characterised by increased hip flexion, pelvis contralateral drop, thorax tilt and increased hip work. Cluster 3 (45%) was characterised by high ankle dorsiflexion, thorax contralateral drop, ankle work and prolonged ground contact time. No correlation was observed between movement clusters and clinically palpated location of the participant's pain. Conclusions: We identified three distinct movement strategies among athletes with long-standing groin pain during a maximum effort change-of-direction task. These movement strategies were not related to clinical assessment findings but highlighted targets for rehabilitation in response to possible propagative mechanisms. Trial registration number NCT02437942, pre results.
Resumo:
Stakeholder engagement is important for successful management of natural resources, both to make effective decisions and to obtain support. However, in the context of coastal management, questions remain unanswered on how to effectively link decisions made at the catchment level with objectives for marine biodiversity and fisheries productivity. Moreover, there is much uncertainty on how to best elicit community input in a rigorous manner that supports management decisions. A decision support process is described that uses the adaptive management loop as its basis to elicit management objectives, priorities and management options using two case studies in the Great Barrier Reef, Australia. The approach described is then generalised for international interest. A hierarchical engagement model of local stakeholders, regional and senior managers is used. The result is a semi-quantitative generic elicitation framework that ultimately provides a prioritised list of management options in the context of clearly articulated management objectives that has widespread application for coastal communities worldwide. The case studies show that demand for local input and regional management is high, but local influences affect the relative success of both engagement processes and uptake by managers. Differences between case study outcomes highlight the importance of discussing objectives prior to suggesting management actions, and avoiding or minimising conflicts at the early stages of the process. Strong contributors to success are a) the provision of local information to the community group, and b) the early inclusion of senior managers and influencers in the group to ensure the intellectual and time investment is not compromised at the final stages of the process. The project has uncovered a conundrum in the significant gap between the way managers perceive their management actions and outcomes, and community's perception of the effectiveness (and wisdom) of these same management actions.
Resumo:
This PhD thesis contains three main chapters on macro finance, with a focus on the term structure of interest rates and the applications of state-of-the-art Bayesian econometrics. Except for Chapter 1 and Chapter 5, which set out the general introduction and conclusion, each of the chapters can be considered as a standalone piece of work. In Chapter 2, we model and predict the term structure of US interest rates in a data rich environment. We allow the model dimension and parameters to change over time, accounting for model uncertainty and sudden structural changes. The proposed timevarying parameter Nelson-Siegel Dynamic Model Averaging (DMA) predicts yields better than standard benchmarks. DMA performs better since it incorporates more macro-finance information during recessions. The proposed method allows us to estimate plausible realtime term premia, whose countercyclicality weakened during the financial crisis. Chapter 3 investigates global term structure dynamics using a Bayesian hierarchical factor model augmented with macroeconomic fundamentals. More than half of the variation in the bond yields of seven advanced economies is due to global co-movement. Our results suggest that global inflation is the most important factor among global macro fundamentals. Non-fundamental factors are essential in driving global co-movements, and are closely related to sentiment and economic uncertainty. Lastly, we analyze asymmetric spillovers in global bond markets connected to diverging monetary policies. Chapter 4 proposes a no-arbitrage framework of term structure modeling with learning and model uncertainty. The representative agent considers parameter instability, as well as the uncertainty in learning speed and model restrictions. The empirical evidence shows that apart from observational variance, parameter instability is the dominant source of predictive variance when compared with uncertainty in learning speed or model restrictions. When accounting for ambiguity aversion, the out-of-sample predictability of excess returns implied by the learning model can be translated into significant and consistent economic gains over the Expectations Hypothesis benchmark.
Resumo:
Tämä diplomityö tarkastelee pelaajatyyppien ja pelaajamotivaatioiden tunnistamista videopeleissä. Aiempi tutkimus tuntee monia pelaajatyyppien malleja, mutta niitä ei ole liiemmin sovellettu käytäntöön peleissä. Tässä työssä suoritetaan systemaattinen kirjallisuuskartoitus erilaisista pelaajatyyppien malleista, jonka pohjalta esitetään useita pelaajien luokittelutapoja. Lisäksi toteutetaan tapaustutkimus, jossa kirjallisuuden pohjalta valitaan pelaajien luokittelumalli ja testataan mallia käytännössä tunnistamalla pelaajatyyppejä data-analytiikan avulla reaaliaikaisessa strategiapelissä.
Resumo:
This PhD thesis contains three main chapters on macro finance, with a focus on the term structure of interest rates and the applications of state-of-the-art Bayesian econometrics. Except for Chapter 1 and Chapter 5, which set out the general introduction and conclusion, each of the chapters can be considered as a standalone piece of work. In Chapter 2, we model and predict the term structure of US interest rates in a data rich environment. We allow the model dimension and parameters to change over time, accounting for model uncertainty and sudden structural changes. The proposed time-varying parameter Nelson-Siegel Dynamic Model Averaging (DMA) predicts yields better than standard benchmarks. DMA performs better since it incorporates more macro-finance information during recessions. The proposed method allows us to estimate plausible real-time term premia, whose countercyclicality weakened during the financial crisis. Chapter 3 investigates global term structure dynamics using a Bayesian hierarchical factor model augmented with macroeconomic fundamentals. More than half of the variation in the bond yields of seven advanced economies is due to global co-movement. Our results suggest that global inflation is the most important factor among global macro fundamentals. Non-fundamental factors are essential in driving global co-movements, and are closely related to sentiment and economic uncertainty. Lastly, we analyze asymmetric spillovers in global bond markets connected to diverging monetary policies. Chapter 4 proposes a no-arbitrage framework of term structure modeling with learning and model uncertainty. The representative agent considers parameter instability, as well as the uncertainty in learning speed and model restrictions. The empirical evidence shows that apart from observational variance, parameter instability is the dominant source of predictive variance when compared with uncertainty in learning speed or model restrictions. When accounting for ambiguity aversion, the out-of-sample predictability of excess returns implied by the learning model can be translated into significant and consistent economic gains over the Expectations Hypothesis benchmark.
Resumo:
Choosing a single similarity threshold for cutting dendrograms is not sufficient for performing hierarchical clustering analysis of heterogeneous data sets. In addition, alternative automated or semi-automated methods that cut dendrograms in multiple levels make assumptions about the data in hand. In an attempt to help the user to find patterns in the data and resolve ambiguities in cluster assignments, we developed MLCut: a tool that provides visual support for exploring dendrograms of heterogeneous data sets in different levels of detail. The interactive exploration of the dendrogram is coordinated with a representation of the original data, shown as parallel coordinates. The tool supports three analysis steps. Firstly, a single-height similarity threshold can be applied using a dynamic slider to identify the main clusters. Secondly, a distinctiveness threshold can be applied using a second dynamic slider to identify “weak-edges” that indicate heterogeneity within clusters. Thirdly, the user can drill-down to further explore the dendrogram structure - always in relation to the original data - and cut the branches of the tree at multiple levels. Interactive drill-down is supported using mouse events such as hovering, pointing and clicking on elements of the dendrogram. Two prototypes of this tool have been developed in collaboration with a group of biologists for analysing their own data sets. We found that enabling the users to cut the tree at multiple levels, while viewing the effect in the original data, is a promising method for clustering which could lead to scientific discoveries.
Resumo:
Doutoramento em Engenharia Florestal e dos Recursos Naturais - Instituto Superior de Agronomia - UL