957 resultados para Herod I, King of Judea, 73-4 B.C.
Resumo:
It has been established that 6-(5,6-dialkyl-1,2,4-triazin-3-yl)-2,2'-bipyridines (R,hemi-BTPs) have properties which are intermediate between those of the terpyridines and the bis(1,2,4-triazin-3-yl)pyridines (BTPs). However, they resemble the terpyridines much more closely than the BTPs. It has been shown that Et, hemi-BTP when dissolved in TPH-a dodecane-like solvent-is a selective reagent for the separation of americium(III) from europium(III). Solution NMR in acetonitrile largely confirmed the crystallographic results. There was no evidence for a 1 : 3 complex cation, or for significant differences between metal(III)-N distances for the pyridine and 1,2,4-triazine rings. Intramolecular hydrogen bonding plays a crucial role in the formation of metal coordination spheres, which explains the differences between the terpyridyl, R,hemi-BTPs and the BTPs. Protonation of the R,hemi-BTPs facilitates a conformational change which is necessary for complexation.
Resumo:
P makes it possible: The convenient oxidative synthesis of the 16-electron organophosphorus iron sandwich complex [Fe(4-P2C2tBu2)2] suggests that the elusive all-carbon complex [Fe(4-C4H4)2] is a viable synthetic target.
Resumo:
The perceived wisdom about thin sheet fracture is that (i) the crack propagates under mixed mode I & III giving rise to a slant through-thickness fracture profile and (ii) the fracture toughness remains constant at low thickness and eventually decreases with increasing thickness. In the present study, fracture tests performed on thin DENT plates of various thicknesses made of stainless steel, mild steel, 6082-O and NS4 aluminium alloys, brass, bronze, lead, and zinc systematically exhibit (i) mode I “bath-tub”, i.e. “cup & cup”, fracture profiles with limited shear lips and significant localized necking (more than 50% thickness reduction), (ii) a fracture toughness that linearly increases with increasing thickness (in the range of 0.5–5 mm). The different contributions to the work expended during fracture of these materials are separated based on dimensional considerations. The paper emphasises the two parts of the work spent in the fracture process zone: the necking work and the “fracture” work. Experiments show that, as expected, the work of necking per unit area linearly increases with thickness. For a typical thickness of 1 mm, both fracture and necking contributions have the same order of magnitude in most of the metals investigated. A model is developed in order to independently evaluate the work of necking, which successfully predicts the experimental values. Furthermore, it enables the fracture energy to be derived from tests performed with only one specimen thickness. In a second modelling step, the work of fracture is computed using an enhanced void growth model valid in the quasi plane stress regime. The fracture energy varies linearly with the yield stress and void spacing and is a strong function of the hardening exponent and initial void volume fraction. The coupling of the two models allows the relative contributions of necking versus fracture to be quantified with respect to (i) the two length scales involved in this problem, i.e. the void spacing and the plate thickness, and (ii) the flow properties of the material. Each term can dominate depending on the properties of the material which explains the different behaviours reported in the literature about thin plate fracture toughness and its dependence with thickness.
Resumo:
Asymmetric poly(styrene-b-methyl methacrylate) (PS-b-PMMA) diblock copolymers of molecular weight M-n = 29,700g mol(-1) (M-PS = 9300 g mol(-1) M-PMMA = 20,100 g mol(-1), PD = 1.15, chi(PS) = 0.323, chi(PMMA) = 0.677) and M-n = 63,900 g mol(-1) (M-PS = 50,500 g mol(-1), M-PMMA = 13,400 g mol(-1), PD = 1.18, chi(PS) = 0.790, chi(PMMA) = 0.210) were prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization. Atomic force microscopy (AFM) was used to investigate the surface structure of thin films, prepared by spin-coating the diblock copolymers on a silicon substrate. We show that the nanostructure of the diblock copolymer depends on the molecular weight and volume fraction of the diblock copolymers. We observed a perpendicular lamellar structure for the high molar mass sample and a hexagonal-packed cylindrical patterning for the lower molar mass one. Small-angle X-ray scattering investigation of these samples without annealing did not reveal any ordered structure. Annealing of PS-b-PMMA samples at 160 degrees C for 24 h led to a change in surface structure.
Resumo:
Iron is a pivotal element in organometallic chemistry, enabling fundamental insights with high-impact applications.[1] Ferrocene derivatives have countless uses,[2] and the recent advances in iron catalysis are equally impressive.[3]
Resumo:
High-resolution simulations over a large tropical domain (∼20◦S–20◦N and 42◦E–180◦E) using both explicit and parameterized convection are analyzed and compared to observations during a 10-day case study of an active Madden-Julian Oscillation (MJO) event. The parameterized convection model simulations at both 40 km and 12 km grid spacing have a very weak MJO signal and little eastward propagation. A 4 km explicit convection simulation using Smagorinsky subgrid mixing in the vertical and horizontal dimensions exhibits the best MJO strength and propagation speed. 12 km explicit convection simulations also perform much better than the 12 km parameterized convection run, suggesting that the convection scheme, rather than horizontal resolution, is key for these MJO simulations. Interestingly, a 4 km explicit convection simulation using the conventional boundary layer scheme for vertical subgrid mixing (but still using Smagorinsky horizontal mixing) completely loses the large-scale MJO organization, showing that relatively high resolution with explicit convection does not guarantee a good MJO simulation. Models with a good MJO representation have a more realistic relationship between lower-free-tropospheric moisture and precipitation, supporting the idea that moisture-convection feedback is a key process for MJO propagation. There is also increased generation of available potential energy and conversion of that energy into kinetic energy in models with a more realistic MJO, which is related to larger zonal variance in convective heating and vertical velocity, larger zonal temperature variance around 200 hPa, and larger correlations between temperature and ascent (and between temperature and diabatic heating) between 500–400 hPa.
Resumo:
Forgetting immediate physical reality and having awareness of one�s location in the simulated world is critical to enjoyment and performance in virtual environments be it an interactive 3D game such as Quake or an online virtual 3d community space such as Second Life. Answer to the question "where am I?" at two levels, whether the locus is in the immediate real world as opposed to the virtual world and whether one is aware of the spatial co-ordinates of that locus, hold the key to any virtual 3D experience. While 3D environments, especially virtual environments and their impact on spatial comprehension has been studied in disciplines such as architecture, it is difficult to determine the relative contributions of specific attributes such as screen size or stereoscopy towards spatial comprehension since most of them treat the technology as monolith (box-centered). Using a variable-centered approach put forth by Nass and Mason (1990) which breaks down the technology into its component variables and their corresponding values as its theoretical basis, this paper looks at the contributions of five variables (Stereoscopy, screen size, field of view, level of realism and level of detail) common to most virtual environments on spatial comprehension and presence. The variable centered approach can be daunting as the increase in the number of variables can exponentially increase the number of conditions and resources required. We overcome this drawback posed by adoption of such a theoretical approach by the use of a fractional factorial design for the experiment. This study has completed the first wave of data collection and starting the next phase in January 2007 and expected to complete by February 2007. Theoretical and practical implications of the study are discussed.
Resumo:
We present high time-resolution multiwavelength observations of X-ray bursts in the low-mass X-ray binary UY Vol. Strong reprocessed signals are present in the ultraviolet and optical, lagged and smeared with respect to the X-rays. The addition of far-ultraviolet coverage for one burst allows much tighter constraints on the temperature and geometry of the reprocessing region than previously possible. A blackbody reprocessing model for this burst suggests a rise in temperatures during the burst from 18,000 to 35,000 K and an emitting area comparable to that expected for the disk and/or irradiated companion star. The lags are consistent with those expected. The single-zone blackbody model cannot reproduce the ratio of optical to ultraviolet flux during the burst, however. The discrepancy seems too large to explain with deviations from a local blackbody spectrum and more likely indicates that a range of reprocessing temperatures are required. Comparable results are derived from other bursts, and in particular the lag and smearing both appear shorter when the companion star is on the near side of the disk as predicted. The burst observed by HST also yielded a spectrum of the reprocessed light. It is dominated by continuum, with a spectral shape consistent with the temperatures derived from lightcurve modeling. Taken as a whole, our observations confirm the standard paradigm of prompt reprocessing distributed across the disk and companion star, with the response dominated by a thermalized continuum rather than by emission lines.
Resumo:
It is recognised that ageing induces various changes to the human colonic microbiota. Most relevant is a reduction in bifidobacteria, which is a health-positive genus. Prebiotics, such as galacto-oligosaccharides (GOS), are dietary ingredients that selectively fortify beneficial gut microbial groups. Therefore, they have the potential to reverse the age-related decline in bifidobacteria and modulate associated health parameters. We assessed the effect of GOS mixture (Bimuno (B-GOS)) on gut microbiota, markers of immune function and metabolites in forty elderly (age 65-80 years) volunteers in a randomised, double-blind, placebo (maltodextrin)-controlled, cross-over study. The intervention periods consisted of 10 weeks with daily doses of 5·5 g/d with a 4-week washout period in between. Blood and faecal samples were collected for the analyses of faecal bacterial populations and immune and metabolic biomarkers. B-GOS consumption led to significant increases in bacteroides and bifidobacteria, the latter correlating with increased lactic acid in faecal waters. Higher IL-10, IL-8, natural killer cell activity and C-reactive protein and lower IL-1β were also observed. Administration of B-GOS to elderly volunteers may be useful in positively affecting the microbiota and some markers of immune function associated with ageing.
Resumo:
Giardia duodenalis is a protozoan that parasitizes humans and other mammals and causes giardiasis. Although its isolates have been divided into seven assemblages, named A to G, only A and B have been detected in human faeces. Assemblage A isolates are commonly divided into two genotypes, AI and AII. Even though information about the presence of this protozoan in water and sewage is available in Brazil, it is important to verify the distribution of different assemblages that might be present, which can only be done by genotyping techniques. A total of 24 raw and treated sewage, surface and spring water samples were collected, concentrated and purified. DNA was extracted, and a nested PCR was used to amplify an 890 bp fragment of the gdh gene of G. duodenalis, which codes for glutamate dehydrogenase. Positive samples were cloned and sequenced. Ten out of 24 (41.6%) samples were confirmed to be positive for G. duodenalis by sequencing. Phylogenetic analysis grouped most sequences with G. duodenalis genotype AII from GenBank. Only two raw sewage samples presented sequences assigned to assemblage B. In one of these samples genotype AII was also detected. As these assemblages/genotypes are commonly associated to human giardiasis, the contact with these matrices represents risk for public health.
Resumo:
This work investigated the functional role of nuclear factor-kappa B (NF-kappa B) in respiratory burst activity and in expression of the human phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase genes CYBB, CYBA, NCF1, and NCF2. U937 cells with a stably transfected repressor of NF-kappa B (IKB alpha-S32A/S36A) demonstrated significantly lower superoxide release and lower CYBB and NCF1 gene expression compared with control U937 cells. We further tested Epstein-Barr virus (EBV)-transformed B cells from patients with anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID), an inherited disorderof NF-kappa B function. Superoxide release and CYBB gene expression by EDA-ID cells were significantly decreased compared with healthy cells and similar to cells from patients with X-linked chronic granulomatous disease (X91 degrees CGD). NCF1 gene expression in EDA-ID S321 cells was decreased compared with healthy control cells and similar to that in autosomal recessive (A47 degrees) CGD cells. Gel shift assays demonstrated loss of recombinant human p50 binding to a NF-kappa B site 5` to the CYBB gene in U937 cells treated with NF-kappa B inhibitors, repressor-transfected U937 cells, and EDA-ID patients cells. Zymosan phagocytosis was not affected by transfection of U937 cells with the NF-kappa B repressor. These studies show that NF-kappa B is necessary for CYBB and NCF1 gene expression and activation of the phagocyte NADPH oxidase in this model system.
Resumo:
The therapeutic efficacy of amphotericin B and voriconazole alone and in combination with one another were evaluated in immunodeficient mice (BALB/c-SCID) infected with a fluconazole-resistant strain of Cryptococcus neoformans var. grubii. The animals were infected intravenously with 3 x 10(5) cells and intraperitoneally treated with amphotericin B (1.5 mg/kg/day) in combination with voriconazole (40 mg/kg/days). Treatment began 1 day after inoculation and continued for 7 and 15 days post-inoculation. The treatments were evaluated by survival curves and yeast quantification (CFUs) in brain and lung tissues. Treatments for 15 days significantly promoted the survival of the animals compared to the control groups. Our results indicated that amphotericin B was effective in assuring longest-term survival of infected animals, but these animals still harbored the highest CFU of C. neoformans in lungs and brain at the end of the experiment. Voriconazole was not as effective alone, but in combination with amphotericin B, it prolonged survival for the second-longest time period and provided the lowest colonization of target organs by the fungus. None of the treatments were effective in complete eradication of the fungus in mice lungs and brain at the end of the experiment.
Resumo:
In this work, KHSO(4):Mn crystals doped with Mn and K(2)SO(4) were synthesized using an aqueous solution method. The samples were exposed to ionizing radiation in order to observe the effects on their physical properties. Raman spectroscopy was used to identify the structure of the crystals by detecting the vibrational frequencies of the crystalline lattice. Electron paramagnetic resonance (EPR) was used to study the creation of paramagnetic centers arising from exposure to ionizing radiation. This new synthesis method produces high quality K(2)SO(4) and KHSO(4):Mn crystals and allows control of structural, morphological, optical and magnetic properties. (C) 2009 Elsevier B.V. All rights reserved,