932 resultados para Heavy-metal Stress


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The use of organic compounds has been a good option to reduce spending on fertilizers, and gain increased productivity in the cultivation of lettuce. However, given the wide variety of raw materials used in the preparation of organic compounds, studies are needed to evaluate its effects on the release of essential nutrients to plants and on the release of contaminants such as heavy metals. The aim of this study was to evaluate the mineral nutrition and heavy metal contamination of lettuce in soils treated with doses and types of compost. The experiment was conducted in a greenhouse in randomized blocks in factorial scheme 5x4, with five types of organic compounds and four nitrogen levels (0, 35, 70 and 140 kg ha(-1) of N), with four replications. In general, the doses of the compounds were not enough to provide the necessary quantity of nutrients to the lettuce, with the exception of nitrogen. There was no increase in levels of heavy metals in the soil above that allowed by Brazilian legislation. Furthermore, compounds based on manure plus grass, and commercial compound caused increases in Zn concentration in plants at levels above the recommended for consumed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The city of Vazante-MG is of great socioeconomic and environmental interest because it is the most important zinc producer district of Brazil. The mineral processing and geochemical processes may determine high concentrations of heavy metals in water intended for human consumption. Thus, the present study aimed to quantify and evaluate the heavy metal genotoxicity of artesian water in the city by Atomic absorption spectrophotometer analysis and testing with the Allium cepa test, respectively. This study reveals a chemical contamination in well water in the city, caused by the presence of heavy metals. Therefore, it can be considered that the high levels of heavy metals found in water samples are correlated with the genotoxic events observed in root cells of A. cepa.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ingestion of vegetables containing heavy metals is one of the main ways in which these elements enter the human body. Once entered, heavy metals are deposited in bone and fat tissues, overlapping noble minerals. Slowly released into the body, heavy metals can cause an array of diseases. This study aimed to investigate the concentrations of cadmium, nickel, lead, cobalt and chromium in the most frequently consumed foodstuff in the Sao Paulo State, Brazil and to compare the heavy metal contents with the permissible limits established by the Brazilian legislation. A value of intake of heavy metals in human diets was also calculated to estimate the risk to human health. Vegetable samples were collected at the Sao Paulo General Warehousing and Centers Company, and the heavy metal content was determined by atomic absorption spectrophotometry. All sampled vegetables presented average concentrations of Cd and Ni lower than the permissible limits established by the Brazilian legislation. Pb and Cr exceeded the limits in 44 % of the analyzed samples. The Brazilian legislation does not establish a permissible limit for Co contents. Regarding the consumption habit of the population in the Sao Paulo State, the daily ingestion of heavy metals was below the oral dose of reference, therefore, consumption of these vegetables can be considered safe and without risk to human health.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Waste products from the forest industry are to be spread in forests in Sweden to counteract nutrient depletion due to whole tree harvesting. This may increase the bioavailability of calcium (Ca) and heavy metals, such as cadmium (Cd), copper (Cu) and zinc (Zn) in forest soils. Heavy metals, like Cd, have already been enriched in forest soils in Sweden, due to deposition of air pollutions, and acidification of forest soils has increased the bioavailability of toxic metals for plant uptake. Changes in the bioavailability of metals may be reflected in altered accumulation of Ca and heavy metals in forest trees, changes in tree growth, including wood formation, and altered tree species composition. This thesis aims at examining: A) if inter- or intra- specific differences in sensitivity to Cd occur in the most common tree species of Sweden, and if so, to study if these can be explained by the uptake and distribution of Cd within the plant: B) how elevated levels of Ca, Cd, Cu and Zn affect the accumulation and attachment of metals in bark and wood, and growth of young Norway spruce (Picea abies): C) how waste products from the forest industry, such as wood ash, influence the contents of Ca, Cd, Cu and Zn in wood and bark of young Norway spruce. Sensitivity to Cd, and its uptake and distribution, in seedlings of Picea abies, Pinus sylvestris and Betula pendula from three regions (southern, central and northern parts) of Sweden, treated with varying concentrations of Cd, were compared. Differences in root sensitivity to Cd both among and within woody species were found and the differences could to some extent be explained by differences in uptake and translocation of Cd. The root sensitivity assays revealed that birch was the least, and spruce the most, sensitive species, both to the external and to tissue levels of Cd. The central ecotype of the species tested tended to be most Cd resistant. The radial distribution, accumulation and attachment of, and interactions between Ca and heavy metals in stems of two-year-old Norway spruce trees treated with elevated levels of Cd, Cu, Zn and/or Ca, were investigated. Further, the influence of these metals on growth, and on root metal content, was examined. Accumulation of the metals was enhanced in wood, bark and/or roots at elevated levels of the metal in question. Even at low levels of the metals, similar to after application of wood ash, an enhanced accumulation was apparent in wood and/or bark, except for Cd. The increased accumulation of Zn and Cu in the stem did not affect the growth. However, Cu decreased the accumulation of Ca in wood. Higher levels of Cu and Cd reduced the stem diameter and the toxic effect was associated with a reduced Ca content in wood. Copper and Cd also decreased the accumulation of Zn in the stem. On the other hand, elevated levels of Ca increased the stem diameter and reduced the accumulation of Cd, Cu, Zn and Mn in wood and/or bark. When metals interacted with each other the firmly bound fraction of the metal reduced was in almost all cases not affected. As an exception, Cd decreased the firmly bound fraction of Zn in the stem. The influence of pellets of wood ash (ash) or a mixture of wood ash and green liquor dregs (ash+GLD), in the amount of 3000 kg ha-1, on the contents of Ca, Cd, Cu and Zn in wood and bark of young Norway spruce in the field was examined. The effect of the treatments on the metal content of bark and wood was larger after 3 years than after 6 years. Treatment with ash+GLD had less effect on the heavy metal content of bark and wood than treatment with ash alone. The ash treatment increased the Cu and Zn content in bark and wood, respectively, after 3 years, and decreased the Ca content of the wood after 6 years. The ash+GLD treatment increased the Ca content of the bark and decreased the Zn content of bark and wood after 3 years. Both treatments reduced, or tended to decrease, the Cd content in wood and bark at both times. To conclude, small changes in the bioavailability of Ca, Cu, Cd and Zn in forest soils, such as after spreading pellets of wood ash or a mixture of wood ash and green liquor dregs from the forest industry, will be reflected in an altered accumulation of metals in wood and bark of Norway spruce. It will not only be reflected in changed accumulation of those metals in which bioavailability in the soil has been enhanced, but also of other metals, probably partly due to interactions between metals. When metals interact the exchangeable bound fraction of the metal reduced is suggested to be the main fraction affected. The small alterations in accumulation of metals should not affect the growth of Norway spruce, especially since the changes in accumulation of metals are low, and further since these decrease over time. However, as an exception, one positive and maybe persistent effect of the waste products is that these may decrease the accumulation of Cd in Norway spruce, which partly may be explained by competition with Ca for uptake, translocation and binding. A decreased accumulation of Cd in Norway spruce will probably affect the trees positively, since Norway spruce is one of the most sensitive species to Cd of the forest trees in Sweden. Thus, spreading of waste products from the forest industry may be a solution to decrease the accumulation of Cd in Norway spruce. In a longer perspective, this will decrease the risk of Cd altering the tree species composition of the forest ecosystem. An elevated bioavailability of Ca in forest soils will, in addition to Cd, probably also decrease the accumulation of other less competitive heavy metals, like Zn and Mn, in the stem.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Obiettivo del lavoro è stato lo sviluppo e la validazione di nuovi bioassay e biomarker quali strumenti da utilizzare in un approccio ecotossicologico integrato per il biomonitoraggio di ambienti marino-costieri interessati da impatto antropico negli organismi che vivono in tali ambienti. L’ambiente reale impiegato per l’applicazione in campo è la Rada di Augusta (Siracusa, Italia). Una batteria di bioassay in vivo e in vitro è stata indagata quale strumento di screening per la misura della tossicità dei sedimenti. La batteria selezionata ha dimostrato di possedere i requisiti necessari ad un applicazione di routine nel monitoraggio di ambienti marino costieri. L’approccio multimarker basato sull’impiego dell’organismo bioindicatore Mytilus galloprovincialis in esperimenti di traslocazione ha consentito di valutare il potenziale applicativo di nuovi biomarker citologici e molecolari di stress chimico parallelamente a biomarker standardizzati di danno genotossico ed esposizione a metalli pesanti. I mitili sono stati traslocati per 45 giorni nei siti di Brucoli (SR) e Rada di Augusta, rispettivamente sito di controllo e sito impattato. I risultati ottenuti supportano l’applicabilità delle alterazioni morfometriche dei granulociti quale biomarker di effetto, direttamente correlato allo stato di salute degli organismi che vivono in un dato ambiente. Il significativo incremento dell’area dei lisosomi osservato contestualmente potrebbe riflettere un incremento dei processi degradativi e dei processi autofagici. I dati sulla sensibilità in campo suggeriscono una valida applicazione della misura dell’attività di anidrasi carbonica in ghiandola digestiva come biomarker di stress in ambiente marino costiero. L’utilizzo delle due metodologie d’indagine (bioassay e biomarker) in un approccio ecotossicologico integrato al biomonitoraggio di ambienti marino-costieri offre uno strumento sensibile e specifico per la valutazione dell’esposizione ad inquinanti e del danno potenziale esercitato dagli inquinanti sugli organismi che vivono in un dato ambiente, permettendo interventi a breve termine e la messa a punto di adeguati programmi di gestione sostenibile dell’ambiente.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A recombinant metal-dependent phosphatidylinositol-specific phospholipase C (PI-PLC) from Streptomyces antibioticus has been crystallized by the hanging-drop method with and without heavy metals. The native crystals belonged to the orthorhombic space group P222, with unit-cell parameters a = 41.26, b = 51.86, c= 154.78 A. The X-ray diffraction results showed significant differences in the crystal quality of samples soaked with heavy atoms. Additionally, drop pinning, which increases the surface area of the drops, was also used to improve crystal growth and quality. The combination of heavy-metal soaks and drop pinning was found to be critical for producing high-quality crystals that diffracted to 1.23 A resolution.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In yeasts, the ABC-type transporters are involved in vacuolar sequestration of cadmium. In plants, transport experiments with isolated vacuoles indicate that this is also true. In order to know more about the response of AtMRPs, a subclass of Arabidopsis ABC transporters, to cadmium, their expression pattern was analysed using the microchip technology and semi-quantitative reverse transcriptase-polymerase chain reaction. From 15 putative sequences coding for AtMRPs, transcript levels were detected for 14. All were expressed in the roots as well as in the shoots, although at a different level. In 4-week-old Arabidopsis, transcript levels of four AtMRPs were up-regulated after cadmium treatment. In all cases up-regulation was exclusively observed in the roots. The increase of transcript levels was most pronounced for AtMRP3. A more detailed analysis revealed that induction of AtMRP3 could also be observed in the shoot when leaves were cut and cadmium allowed to be taken up in the shoot. In young plantlets, a far higher portion of Cd2+ was translocated in the aerial part compared with adult plants. Consequently, AtMRP3 transcript levels increased in both root and shoot of young plants. This suggests that 7-day-old seedlings do not exhibit such a strict root–shoot barrier as 4-week-old plants. Expression analysis with mutant plants for glutathione and phytochelatin synthesis as well as with compounds producing oxidative stress indicate that induction of AtMRP3 is likely due to the heavy metal itself.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present study was undertaken to identify changes in some important proteins involved in CO2 fixation (Rubisco, Rubisco activase (RA), Rubisco binding protein (RBP)), NH4+ assimilation (glutamine synthetase (GS) and glutamate synthase (GOGAT)), using immunoblotting, and in the antioxidative defense as a result of Cu or Mn excess in barley leaves (Hordeum vulgare L. cv. Obzor). Activities and isoenzyme patterns of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and catalase (CAT), as well as the levels of ascorbate (ASC), non-protein sulfhydryl groups, hydrogen peroxide and oxidative damage to proteins were determined. Data were correlated to the accumulation of Cu or Mn in the leaves after 5 days supply of heavy metal (HM) excess in the nutrient solution. In the highest Cu excess (1500 μM), Rubisco LS and SS were reduced considerably whereas under the highest Mn concentrations (18,300 μM) only minor changes in Rubisco subunits were detected. The RBP was diminished under the highest concentrations of both Cu or Mn. The bands of RA changed differently comparing Cu and Mn toxicity. GS decreased and GOGAT was absent under the highest concentration of Cu. At Mn excess Fd-GOGAT diminished whereas GS was not apparently changed. The development of toxicity symptoms corresponded to an accumulation of Cu or Mn in the leaves and to a gradual increase in protein carbonylation, a lower SOD activity and elevated CAT and GPX activities. APX activity was diminished under Mn toxicity and was not changed under Cu excess. Generally, changes in the isoenzyme profiles were similar under both toxicities. An accumulation of H2O2 was observed only at Mn excess. Contrasting changes in the low-molecular antioxidants were detected when comparing both toxicities. Cu excess affected mainly the non-protein SH groups, while Mn influenced the ASC content. Oxidative stress under Cu or Mn toxicity was most probably the consequence of depletion in low-molecular antioxidants as a result of their involvement in detoxification processes and disbalance in antioxidative enzymes. The link between heavy metal accumulation in leaves, leading to different display of oxidative stress, and changes in individual chloroplast proteins is discussed in the article.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This volume contains the Proceedings of the Twenty-Sixth Annual Biochemical Engineering Symposium held at Kansas State University on September 21, 1996. The program included 10 oral presentations and 14 posters. Some of the papers describe the progress of ongoing projects, and others contain the results of completed projects. Only brief summaries are given of some of the papers; many of the papers will be published in full elsewhere. A listing of those who attended is given below. ContentsForeign Protein Production from SV40 Early Promoter in Continuous Cultures of Recombinant CHO Cells - Gautam Banik, Paul Todd, and Dhinakar Kampala Enhanced Cell Recruitment Due to Cell-Cell Interactions - Brad Farlow and Matthias Nollert The Recirculation of Hybridoma Suspension Cultures: Effects on Cell Death, Metabolism and Mab Productivity - Peng Jin and Carole A. Heath The Importance of Enzyme Inactivation and Self-Recovery in Cometabolic Biodegradation of Chlorinated Solvents - Xi-Hui Zhang, Shanka Banerji, and Rakesh Bajpai Phytoremediation of VOC contaminated Groundwater using Poplar Trees - Melissa Miller, Jason Dana, L.C. Davis, Murlidharan Narayanan, and L.E. Erickson Biological Treatment of Off-Gases from Aluminum Can Production: Experimental Results and Mathematical Modeling - Adeyma Y. Arroyo, Julio Zimbron, and Kenneth F. Reardon Inertial Migration Based Separation of Chlorella Microalgae in Branched Tubes - N.M. Poflee, A.L. Rakow, D.S. Dandy, M.L. Chappell, and M.N. Pons Contribution of Electrochemical Charge to Protein Partitioning in Aqueous Two-Phase Systems - Weiyu Fan and Charles C. Glatz Biodegradation of Some Commercial Surfactants Used in Bioremediation - Jun Gu, G.W. Preckshot, S.K. Banerji, and Rakesh Bajpai Modeling the Role of Biomass in Heavy Metal Transport Ln Vadose Zone - K.V. Nedunuri, L.E. Erickson, and R.S. Govindaraju Multivariable Statistical Methods for Monitoring Process Quality: Application to Bioinsecticide Production by 73 89 Bacillus Thuringiensis - c. Puente and M.N. Karim The Use of Polymeric Flocculants in Bacterial Lysate Streams - H. Graham, A.S. Cibulskas and E.H. Dunlop Effect of Water Content on transport of Trichloroethylene in a Chamber with Alfalfa Plants - Muralidharan Narayanan, Jiang Hu, Lawrence C. Davis, and Larry E. Erickson Detection of Specific Microorganisms using the Arbitrary Primed PCR in the Bacterial Community of Vegetated Soil - X. Wu and L.C. Davis Flux Enhancement Using Backpulsing - V.T. Kuberkar and R.H. Davis Chromatographic Purification of Oligonucleotides: Comparison with Electrophoresis - Stephen P. Cape, Ching-Yuan Lee, Kevin Petrini, Sean Foree, Micheal G. Sportiello and Paul Todd Determining Singular Arc Control Policies for Bioreactor Systems Using a Modified Iterative Dynamic Programming Algorithm - Arun Tholudur and W. Fred Ramirez Pressure Effect on Subtilisins Measured via FTIR, EPR and Activity Assays, and Its Impact on Crystallizations - J.N. Webb, R.Y. Waghmare, M.G. Bindewald, T.W. Randolph, J.F. Carpenter, C.E. Glatz Intercellular Calcium Changes in Endothelial Cells Exposed to Flow - Laura Worthen and Matthias Nollert Application of Liquid-Liquid Extraction in Propionic Acid Fermentation - Zhong Gu, Bonita A. Glatz, and Charles E. Glatz Purification of Recombinant T4 Lysozyme from E. Coli: Ion-Exchange Chromatography - Weiyu Fan, Matt L. Thatcher, and Charles E. Glatz Recovery and Purification of Recombinant Beta-Glucuronidase from Transgenic Corn - Ann R. Kusnadi, Roque Evangelista, Zivko L. Nikolov, and John Howard Effects of Auxins and cytokinins on Formation of Catharanthus Roseus G. Don Multiple Shoots - Ying-Jin Yuan, Yu-Min Yang, Tsung-Ting Hu, and Jiang Hu Fate and Effect of Trichloroethylene as Nonaqueous Phase Liquid in Chambers with Alfalfa - Qizhi Zhang, Brent Goplen, Sara Vanderhoof, Lawrence c. Davis, and Larry E. Erickson Oxygen Transport and Mixing Considerations for Microcarrier Culture of Mammalian Cells in an Airlift Reactor - Sridhar Sunderam, Frederick R. Souder, and Marylee Southard Effects of Cyclic Shear Stress on Mammalian Cells under Laminar Flow Conditions: Apparatus and Methods - M.L. Rigney, M.H. Liew, and M.Z. Southard

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Heavy metals (Cd, Cu, Fe, Mn and Zn) concentrations were determined in different tissues (muscle, kidney, liver, brain, gonads, heart and feathers) of Glaucous Gulls (Larus hyperboreus) from Bjornoya and Jan Mayen. The age and spatial dependent variations in heavy metals were quantified and interpreted in view of the three chemometric techniques, i.e. non-parametric Mann-Whitney U test, redundancy gradient analysis and detrended correspondence analysis. The Glaucous Gulls from Bjornoya contained significantly higher (p < 0.05) levels of Cd, Cu and Zn than those inhabited Jan Mayen. Adult birds were characterized by greater (p < 0.01) concentration of muscle, hepatic and renal heavy metals in comparison to chicks. Insignificantly higher slope constant Zn/Cd for the liver than for the kidney may reflect insignificant Cd exposure. Estimate of transfer factor (TF) allows us to assess variations in heavy metal concentrations during the individual development of Glaucous Gulls. It may be stated that there is a distinct increase of bioaccumulation of all the studied metals during subsequent stages of the bird life.