991 resultados para Heat waves
Resumo:
The theory of ion-acoustic surface wave propagation on the interface between a dusty plasma and a dielectric is presented. Both the constant and variable dust-charge cases are considered. It is found that massive negatively charged dust grains can significantly affect the propagation and damping of the surface waves. Application of the results to surface-wave generated plasmas is discussed. © 1998 IEEE.
Resumo:
A nonlinear theory for ion-acoustic surface waves propagating at the interface between a dusty plasma and a dielectric is presented. The nonlinear effects are associated with density modulations caused by surface-wave induced anomalous ionization. The negative charge of the massive dust grains is assumed to be constant. It is shown that the effect of the ionization nonlinearity arising from the ion-acoustic surface waves can result in the formation of surface envelope solitons. The wave phase shifts and the widths of the solitons are estimated for typical gas discharge plasmas.
Resumo:
This article presents the results on the diagnostics and numerical modeling of low-frequency (∼460 KHz) inductively coupled plasmas generated in a cylindrical metal chamber by an external flat spiral coil. Experimental data on the electron number densities and temperatures, electron energy distribution functions, and optical emission intensities of the abundant plasma species in low/intermediate pressure argon discharges are included. The spatial profiles of the plasma density, electron temperature, and excited argon species are computed, for different rf powers and working gas pressures, using the two-dimensional fluid approach. The model allows one to achieve a reasonable agreement between the computed and experimental data. The effect of the neutral gas temperature on the plasma parameters is also investigated. It is shown that neutral gas heating (at rf powers≥0.55kW) is one of the key factors that control the electron number density and temperature. The dependence of the average rf power loss, per electron-ion pair created, on the working gas pressure shows that the electron heat flux to the walls appears to be a critical factor in the total power loss in the discharge.
Resumo:
Nonlinear effects associated with density modulation caused by wave-induced ionization in magnetized plasmas were studied. The ionizing surface waves propagate at the interface between the plasma and a metallic surface. It is shown that the ionization nonlinearity can be important for typical experimental conditions.
Resumo:
The effect of charged particulates or dusts on surface wave produced microwave discharges is studied. The frequencies of the standing electromagnetic eigenmodes of large-area flat plasmas are calculated. The dusts absorb a significant amount of the plasma electrons and can lead to a modification of the electromagnetic field structure in the discharge by shifting the originally excited operating mode out of resonance. For certain given proportions of dusts, mode conversion is found to be possible. The power loss in the discharge is also increased because of dust-specific dissipations, leading to a decrease of the operating mode quality factor.
Resumo:
The ionization energy theory is used to calculate the evolution of the resistivity and specific heat curves with respect to different doping elements in the recently discovered superconducting pnictide materials. Electron-conduction mechanism in the pnictides above the structural transition temperature is explained unambiguously, which is also consistent with other strongly correlated materials, such as cuprates, manganites, titanates and magnetic semiconductors.
Resumo:
The nonlinear interaction of high-frequency transverse electromagnetic waves normally incident from a plasma region on to a dielectric with two surface waves (SWs) propagating in the opposite directions along the interface is studied. This interaction is found to be stable causing a slight modulation to the SWs in contrast to the decay instability for longitudinal plasma waves. The corresponding nonlinear frequency shift of the SWs is obtained and analyzed.
Resumo:
The excitation of surface plasmon-polariton waves propagating across an external magnetic field (Voigt geometry) in a semiconductor-metal structure by means of the attenuated total reflection method is investigated. The phase matching conditions for the surface waves excitation in the Kretchmann configuration are derived and analyzed. The effect of different nonlinearities on the excitation of the surface waves is studied as well.
Resumo:
Electrostatic surface waves at the interface between a low-temperature nonisothermal dusty plasma and a metallic wall are investigated. The plasma contains massive negatively charged impurity or dust particles. It is shown that the impurities can significantly alter the characteristics and damping of the surface waves by reducing their phase velocity and causing charging-related damping.
Resumo:
High-frequency surface waves at the interface between two dusty plasmas subject to radiation are considered. Ultraviolet radiation with energy flux larger than the photoelectric work function of the dust surface causes photoemission of electrons. The dust charge and the overall charge balance of the plasma are thus modified. The dispersion properties of the surface waves are investigated for three parameter regimes distinguished by the charging mechanisms in the two plasmas. It is shown that photoemission can significantly affect the plasma and the surface waves.
Resumo:
A self-consistent theory of ion-acoustic waves in dusty gas discharge plasmas is presented. The plasma is contaminated by fine dust particles with variable charge. The stationary state of the plasma and the dispersion and damping characteristics of the waves are investigated accounting for ionization, recombination, dust charge relaxation, and dissipation due to electron and ion elastic collisions with neutrals and dusts, as well as charging collisions with the dusts.
Resumo:
The propagation of Langmuir waves in nonisothermal plasmas contaminated by fine dust particles with variable charge is investigated for a self-consistent closed system. Dust charge relaxation, ionization, recombination, and collisional dissipation are taken into account. It is shown that the otherwise unstable coupling of the Langmuir and dust-charge relaxation modes becomes stable and the Langmuir waves are frequency down-shifted.
Resumo:
A wave propagation in a complex dusty plasma with negative ions was considered. The relevant processes such as ionization, electron attachment, diffusion, positive-negative ion recombination, plasma particle collisions, as well as elastic Coulomb and inelastic dust-charging collisions were taken self-consistently. It was found that the equilibrium of the plasma as well as the propagation of ion waves were modified to various degrees by these effects.
Resumo:
The effect of the nonuniformity of the electron density on the dispersion properties of surface waves propagating in a direction transverse to an external magnetic field is studied for the model of a two-layer plasma structure bounded by a metal. It is shown that the spectra of the waves can be effectively controlled by varying the degree of nonuniformity of the density and the dimensions of the layers.
Resumo:
We investigate nonlinear self-interacting magnetoplasma surface waves (SW) propagating perpendicular to an external magnetic field at a plasma-metal boundary. We obtain the nonlinear dispersion equation and nonlinear Schroedinger equation for the envelope field of the SW. The solution to this equation is studied with regard to stability relative to longitudinal and transverse perturbations.