916 resultados para Hanging meniscus rotating disk voltammetry
Resumo:
The laminar boundary layer over a stationary infinite disk induced by a rotating compressible fluid is considered. The free stream velocity has been taken as tangential and varies as a power of radius, i.e. v∞ ˜ r−n. The effect of the axial magnetic field and suction is also included in the analysis. An implicit finite difference scheme is employed to the governing similarity equations for numerical computations. Solutions are studied for various values of disk to fluid temperature ratio and for values of n between 1 and −1. In the absence of the magnetic field and suction, velocity profiles exhibit oscillations. It has been observed that for a hot disk in the presence of a magnetic field the boundary layer solutions decay algebraically instead of decaying exponentially. In the absence of the magnetic field and suction, the solution of the similarity equations exists only for a certain range of n.
Resumo:
The steady incompressible laminar mixed convection boundary layer flow along a rotating slender vertical cylinder with an isothermal wall has been studied. The transformed coupled nonlinear partial differential equations have been solved numerically using the Keller box method. In general, the rotation of the cylinder, the buoyancy forces and the curvature parameter are found to significantly affect the skin friction, heat transfer, velocity and temperature profiles as well as the pressure distribution. The buoyancy forces cause an overshoot in the axial velocity profile but the rotation and curvature parameters reduce it.
Resumo:
The galactose-specific lectin from the seeds of Dolichos lablab has been crystallized using the hanging-drop vapour-diffusion technique. The crystals belong to space group P1, with unit-cell parameters a = 73.99, b = 84.13, c = 93.15 angstrom, alpha = 89.92, beta = 76.01, gamma = 76.99 degrees. X-ray diffraction data to a resolution of 3.0 angstrom have been collected under cryoconditions ( 100 K) using a MAR imaging-plate detector system mounted on a rotating-anode X-ray generator. Molecular-replacement calculations carried out using the available structures of legume lectins as search models revealed that the galactose-specific lectin from D. lablab forms a tetramer similar to soybean agglutinin; two such tetramers are present in the asymmetric unit.
Resumo:
A broad numerical survey of relativistic rotating neutron star structures was compiled using an exhaustive list of presently available equation of state models for neutron star matter. The structure parameters (spherical deformations in mass and radii, the moment of inertia and quadrupole moment, oblateness, and free precession) are calculated using the formalism proposed by Hartle and Thorne (1968). The results are discussed in relation to the relevant observational information. Binary pulsar data and X-ray burst sources provide information on the bulk properties of neutron stars, enabling the derivation of constraints that can be put on the structure of neutron stars and equation of state models.
Resumo:
Curves for the uniformity in film thickness on spherical substrates are drawn for various geometries. The optimum source-to-substrate height for maximum uniformity of the film thickness is determined. These data are approximated to achieve uniform thickness on a large number of small planar substrates loaded on a large spherical substrate holder, the appropriate geometry being selected on the basis of the radius of curvature of the substrate holder.
Resumo:
In Salmonella typhimurium, propionate is oxidized to pyruvate via the 2-methylcitric acid cycle. The last step of this cycle, the cleavage of 2-methylisocitrate to succinate and pyruvate, is catalysed by 2-methylisocitrate lyase (EC 4.1.3.30). Methylisocitrate lyase (molecular weight 32 kDa) with a C-terminal polyhistidine affinity tag has been cloned and overexpressed in Escherichia coli and purified and crystallized under different conditions using the hanging-drop vapour-diffusion technique. Crystals belong to the orthogonal space group P2(1)2(1)2(1), with unit-cell parameters a = 63.600, b = 100.670, c = 204.745 Angstrom. A complete data set to 2.5 Angstrom resolution has been collected using an image-plate detector system mounted on a rotating-anode X-ray generator.
Resumo:
A class of self-propagating linear and nonlinear travelling wave solutions for compressible rotating fluid is studied using both numerical and analytical techiques. It is shown that, in general, a three dimensional linear wave is not periodic. However, for some range of wave numbers depending on rotation, horizontally propagating waves are periodic. When the rotation ohgr is equal to $$\sqrt {(\gamma - 1)/(4\gamma )}$$ , all horizontal waves are periodic. Here, gamma is the ratio of specific heats. The analytical study is based on phase space analysis. It reveals that the quasi-simple waves are periodic only in some plane, even when the propagation is horizontal, in contrast to the case of non-rotating flows for which there is a single parameter family of periodic solutions provided the waves propagate horizontally. A classification of the singular points of the governing differential equations for quasi-simple waves is also appended.
Resumo:
A local algorithm with local horizon r is a distributed algorithm that runs in r synchronous communication rounds; here r is a constant that does not depend on the size of the network. As a consequence, the output of a node in a local algorithm only depends on the input within r hops from the node. We give tight bounds on the local horizon for a class of local algorithms for combinatorial problems on unit-disk graphs (UDGs). Most of our bounds are due to a refined analysis of existing approaches, while others are obtained by suggesting new algorithms. The algorithms we consider are based on network decompositions guided by a rectangular tiling of the plane. The algorithms are applied to matching, independent set, graph colouring, vertex cover, and dominating set. We also study local algorithms on quasi-UDGs, which are a popular generalisation of UDGs, aimed at more realistic modelling of communication between the network nodes. Analysing the local algorithms on quasi-UDGs allows one to assume that the nodes know their coordinates only approximately, up to an additive error. Despite the localisation error, the quality of the solution to problems on quasi-UDGs remains the same as for the case of UDGs with perfect location awareness. We analyse the increase in the local horizon that comes along with moving from UDGs to quasi-UDGs.
Resumo:
The restricted three-body method is used to model the effect of the mean tidal field of a cluster of galaxies on the internal dynamics of a disk galaxy falling into the cluster for the first time. In the model adopted the galaxy experiences a tidal field that is compressive within the core of the cluster. The planar random velocities of all components in the disk increase after the galaxy passes through the core of the cluster. The low-velocity dispersion gas clouds experience a relatively larger increase in random velocity than the hotter stellar components. The increase in planar velocities results in a strong anisotropy between the planar and vertical velocity dispersions. It is argued that this will make the disk unstable to the 'fire-hose instability' which leads to bending modes in the disk and which will thicken the disk slightly. The mean tidal fields in rich clusters were probably stronger during the epoch of cluster formation and relaxation than they are in present-day relaxed clusters.
Molecular expression for dielectric friction on a rotating dipole: Reduction to the continuum theory
Resumo:
Recently we presented a microscopic expression for dielectric friction on a rotating dipole. This expression has a rather curious structure, involving the contributions of the transverse polarization modes of the solvent and also of the molecular length scale processes. It is shown here that under proper limiting conditions, this expression reduces exactly to the classical continuum model expression of Nee and Zwanzig [J. Chem. Phys. 52, 6353 (1970)]. The derivation requires the use of the asymptotic form of the orientation‐dependent total pair correlation function, the neglect of the contributions of translational modes of the solvent, and also the use of the limit that the size of the solvent molecules goes to zero. Thus, the derivation can be important in understanding the validity of the continuum model and can also help in explaining the results of a recent computer simulation study of dielectric relaxation in a Brownian dipolar lattice.
Resumo:
We have consider ed the transient motion of art electrically conducting viscous compressible fluid which is in contact with an insulated infinite disk. The initial motion is considered to be due to the uniform rotation of the disk in an otherwise stationary fluid or due to the uniform rigid rotation of the fluid over a stationary disk. Different cases of transient motion due to finite impulse imparted either to the disk or to the distant fluid have been investigated. Effects of the imposed axial magnetic field and the disk temperature on the transient flow are included. The nonlinear partial differential equations governing the motion are solved numerically using an implicit finite-difference scheme along with the Newton's linearisation technique.