999 resultados para HYPERTONIC SODIUM EXPOSURE
Resumo:
Rationale- Chronic exposure to air pollution has been associated with adverse effects on children`s lung growth. Objectives: We analyzed the effects of chronic exposure to urban levels of particulate matter (PM) on selected phases of mouse lung development. Methods: The exposure occurred in two open-top chambers (filtered and nonfiltered) placed 20 m from a street with heavy traffic in Sao Paulo, 24 hours/day for 8 months. There was a significant reduction of the levels of PM(2.5) inside the filtered chamber (filtered = 2.9 +/- 3.0 mu g/m(3), nonfiltered = 16.8 +/- 8.3 mu g/m(3); P = 0.001). At this exposure site, vehicular sources are the major components of PM(2.5) (PM <= 2.5 mu m). Exposure of the parental generation in the two chambers occurred from the 10th to the 120th days of life. After mating and birth of offspring, a crossover of mothers and pups occurred within the chambers, resulting in four groups of pups: nonexposed, prenatal, postnatal, and pre+postnatal. Offspring were killed at the age of 15 (n = 42) and 90 (n = 35) days; lungs were analyzed by morphometry for surface to volume ratio (as an estimator of alveolization). Pressure-volume curves were performed in the older groups, using a 20-ml plethysmograph. Measurements and Main Results: Mice exposed to PM(2.5) pre+postnatally presented a smaller surface to volume ratio when compared with nonexposed animals (P = 0.036). The pre+postnatal group presented reduced inspiratory and expiratory volumes at higher levels of transpulmonary pressure (P = 0.001). There were no differences among prenatal and postnatal exposure and nonexposed animals. Conclusions: Our data provide anatomical and functional support to the concept that chronic exposure to urban PM affects lung growth.
Resumo:
Chantler PD, Nussbacher A, Gerstenblith G, Schulman SP, Becker LC, Ferrucci L, Fleg JL, Lakatta EG, Najjar SS. Abnormalities in arterial-ventricular coupling in older healthy persons are attenuated by sodium nitroprusside. Am J Physiol Heart Circ Physiol 300: H1914-H1922, 2011. First published March 4, 2011; doi:10.1152/ajpheart.01048.2010.-The coupling between arterial elastance (E(A); net afterload) and lea ventricular elastance (E(LV); pump performance), known as E(A)/E(LV), is a key determinant of cardiovascular performance and shifts during exercise due to a greater increase in E(LV) versus E(A). This normal exercise-induced reduction in E(A)/E(LV) decreases with advancing age. We hypothesized that sodium. nitroprusside (SNP) can acutely ameliorate the age-associated deficits in E(A)/E(LV). At rest and during graded exercise to exhaustion, EA was characterized as end-systolic pressure/stroke volume and E(LV) as end-systolic pressure/end-systolic volume. Resting E(A)/E(LV): did not differ between old (70 +/- 8 yr. n = 15) and young (30 +/- 5 yr. n = 17) subjects because of a tandem increase in E(A) and E(LV) in older subjects. During peak exercise, a blunted increase in E(LV) in old (7.8 +/- 3.1 mmHg/ml) versus young (11.4 +/- 6.5 mmHg/ml) subjects blunted the normal exercise-induced decline in E(A)/E(LV) in old (0.25 +/- 0.11) versus young (0.16 +/- 0.05) subjects. SNP administration to older subjects lowered resting E(A)/E(LV) by 31% via a reduction E(A) (10%) and an increase in E(LV) (47%) and lowered peak exercise E(A)/E(LV) (36%) via an increase in E(LV) (68%) without a change in E(A). Importantly, SNP attenuated the age-associated deficits in E(A)/E(LV) and E(LV) during exercise, and at peak exercise E(A)/E(LV) in older subjects on drug administration did not differ from young subjects without drug administration. In conclusion, some age-associated deficiencies in E(A)/E(LV), E(A), and E(LV), in older subjects can be acutely abolished by SNP infusion. This is relevant to common conditions in older subjects associated with a significant impairment of exercise performance such as frailty or heart failure with preserved ejection fraction.
Resumo:
Background: Environmental factors may influence the development of allergen sensitization and asthma. The aim of this study was to evaluate the role of endotoxin and allergen exposure in early life as a risk factor for recurrent wheezing. Methods: One hundred and four infants from low-income families, at high risk of asthma, were enrolled at birth. Dust samples were collected from the bedding and bedroom floor within 6 months after birth. Recurrent wheezing was defined as 3 or more wheezing episodes in the past year. Endotoxin was determined by Limulus amebocyte lysate assay, and major indoor allergens were quantitated by ELISA in dust extracts. IgE antibodies were measured by ImmunoCAP at 30 months of age. Results: At 30 months, 51 of the 99 infants who completed the study (51.5%) had recurrent wheezing. Respiratory infection was strongly associated with recurrent wheezing (OR 6.67, 95% CI 1.96-22.72), whereas exclusive breastfeeding for at least 1 month was a protective factor (OR 0.09, 95% CI 0.01-0.51). Exposure to high levels of mouse allergen was more frequent among non-recurrent wheezers, approaching significance (OR 0.12, 95% CI 0.01-1.13; p=0.064). None of the children were sensitized to mouse. Sensitization to mite was found in 26/90 (28.8%) children, with no association with recurrent wheezing. Conclusion: Respiratory infection was strongly associated with recurrent wheezing in the first 30 months of life, in children at high risk of asthma, living in a socially deprived community in Brazil. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Obesity is a risk factor for GERD and a potential modulator of esophageal motility. To assess whether obese patients differ from non-obese patients in terms of esophageal motility and reflux. Patients (n = 332) were categorized in GERD and controls after clinical assessment, esophageal manometry, and pH monitoring. Non-obese (BMI 16-29.9) and obese (BMI 30-68) were compared in regard of distal esophageal amplitude (DEA), LES pressure (LESP), manometric diagnosis, and esophageal acid exposure (EAE). Obese showed higher DEA in both controls (122 +/- A 53 vs. 97 +/- A 36 mmHg, p = 0.041) and GERD patients (109 +/- A 38 vs. 94 +/- A 46 mmHg, p < 0.001), higher LESP in GERD patients (20.5 +/- A 10.6 vs. 18.2 +/- A 10.6 mmHg, p = 0.049), higher frequency of nutcracker esophagus in controls (30 vs. 0%, p = 0.001), lower frequency of ineffective motility in GERD patients (6 vs. 20%, p = 0.001), and higher EAE in both controls [total EAE: 1.6% (0.7-5.1) vs. 0.9% (0.2-2.4), p = 0.027] and GERD patients [upright EAE: 6.5% (3.8-11.1) vs. 5.2% (1.5-10.6), p = 0.048]. Multiple linear regression showed that BMI was associated either with EAE (p < 0.001), DEA (p = 0.006), or LESP (in men, p = 0.007). Obese patients differed from non-obese in terms of esophageal motility and reflux, regardless of the presence of GERD. Obese patients showed stronger peristalsis and increased acid exposure in the esophagus.
Resumo:
In the present study, the participation of the Na(v)1.8 sodium channel was investigated in the development of the peripheral pro-nociceptive state induced by daily intraplantar injections of PGE(2) in rats and its regulation in vivo by protein kinase A (PKA) and protein kinase C epsilon (PKC epsilon) as well. In the prostaglandin E(2) (PGE(2))-induced persistent hypernociception, the Na(v)1.8 mRNA in the dorsal root ganglia (DRG) was up-regulated. The local treatment with dipyrone abolished this persistent hypernociception but did not alter the Na(v)1.8 mRNA level in the DRG. Daily intrathecal administrations of antisense Na(v)1.8 decreased the Na(v)1.8 mRNA in the DRG and reduced ongoing persistent hypernociception. once the persistent hypernociception had been abolished by dipyrone, but not by Na(v)1.8 antisense treatment, a small dose of PGE(2) restored the hypernociceptive plateau. These data show that, after a period of recurring inflammatory stimuli, an intense and prolonged nociceptive response is elicited by a minimum inflammatory stimulus and that this pro-nociceptive state depends on Na(v)1.8 mRNA up-regulation in the DRG. in addition, during the persistent hypernociceptive state, the PKA and PKC epsilon expression and activity in the DRG are up-regulated and the administration of the PKA and PKC epsilon inhibitors reduce the hypernociception as well as the Na(v)1.8 mRNA level. In the present study, we demonstrated that the functional regulation of the Na(v)1.8 mRNA by PKA and PKC epsilon in the primary sensory neuron is important for the development of the peripheral pro-nociceptive state induced by repetitive inflammatory stimuli and for the maintenance of the behavioral persistent hypernociception. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Lack of effects of clomipramine on Fos and NADPH-diaphorase double-staining in the periaqueductal gray after exposure to an innate fear stimulus - nitric oxide (NO) acts as a neurotransmitter in the rat dorsolateral periaqueductal gray (dIPAG), a midbrain structure that modulates fear and defensive behavior. Since defensive reactions can be alleviated by anxiolytic/anti-panic drugs, the present study tested the effect of clomipramine, a serotonin re-uptake inhibitor, on the activation of NO-producing neurons in the dlPAG of rats exposed to a live predator. Double staining was performed using Fos immunohistochemistry and NADPH-diaphorase as techniques to mark neural activation and to detect NO-producing neurons, respectively. Male Wistar rats received acute or chronic (21 days) injections of saline or clomipramine (10 or 20 mg/kg/day) and were exposed to a live cat. The animals exhibited a robust defensive reaction accompanied by an increase in the number of Fos- and doublestained neurons in the dlPAG, suggesting that cat exposure activates NO-producing neurons. Such effects were not significantly attenuated by clomipramine treatments. The intensity of fear reaction correlated with the intensity of neural staining in the dlPAG, regardless the drug treatment. Thus, the present results reinforce the hypothesis that NO may coordinate defensive responses in the dIPAG and indicate that this mechanism may not be modulated by a serotonin re-uptake inhibitor. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
In the present study, we evaluated cardiac baroreflex responses of rats submitted to acute restraint stress. The baroreflex was tested: immediately before, during a 30 min exposure to restraint stress, as well as 30 and 60 min after ending the stress session (recovery period). Restraint increased both mean arterial pressure (MAP) and heart rate (HR). The magnitude of tachycardiac responses evoked by intravenous infusion of sodium nitroprusside was higher during restraint stress, whereas that of bradycardiac responses evoked by intravenous infusion of phenylephrine was decreased. Restraint-evoked baroreflex changes were still observed at 30 min into the recovery period, although MAP and HR values had already returned to control values. The baroreflex was back to control values at 60 min of the recovery period. Intravenous administration of the selective beta(1)-adrenoceptor antagonist atenolol blocked the restraint-evoked increase in the tachycardiac baroreflex response, but did not affect the effects on the bradycardiac response. In conclusion, the present results suggest that psychological stresses, such as those resulting from acute restraint, affect the baroreflex. Restraint facilitated the tachycardiac baroreflex response and reduced the bradycardiac response. Restraint-related effects on baroreflex persisted for at least 30 min after ending restraint, although MAP and HR had already returned to control levels. The cardiac baroreflex returned to control values 60 min after the end of restraint, indicating non-persistent effects of acute restraint on the baroreflex. Results also indicate that the influence of restraint stress on the baroreflex tachycardiac response is mainly dependent on cardiac sympathetic activity, whereas the action on the bradycardiac response is mediated by the cardiac parasympathetic component.
Resumo:
Secretion of vasopressin (VP), oxytocin (OT) and atrial natriuretic peptide (ANP) is an essential mechanism for the maintenance of hydromineral homeostasis. Secretion of these hormones is modulated by several circulating factors, including oestradiol. However, it remains unclear how oestradiol exerts this modulation. In the present study we investigated the participation of oestradiol in the secretion of VP, OT and ANP and in activation of vasopressinergic and oxytocinergic neurones of the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus in response to extracellular volume expansion (EVE). For this purpose, ovariectomised (OVX) rats treated for 7 days with vehicle (corn oil, 0.1 ml/rat, OVX+O group) or oestradiol (oestradiol cypionate, 10 mu g/kg, OVX+E group) were subjected to either isotonic (0.15 m NaCl, 2 ml/100 g b.w., i.v.) or hypertonic (0.30 m NaCl, 2 ml/100 g b.w., i.v.) EVE. Blood samples were collected for plasma VP, OT and ANP determination. Another group of rats was subjected to cerebral perfusion, and brain sections were processed for c-Fos-VP and c-Fos-OT double-labelling immunohistochemistry. In OVX+O rats, we observed that both isotonic and hypertonic EVE increased plasma OT and ANP concentrations, although no changes were observed in VP secretion. Oestradiol replacement did not alter hormonal secretion in response to isotonic EVE, but it increased VP secretion and potentiated plasma OT and ANP concentrations in response to hypertonic EVE. Immunohistochemical data showed that, in the OVX+O group, hypertonic EVE increased the number of c-Fos-OT and c-Fos-VP double-labelled neurones in the PVN and SON. Oestradiol replacement did not alter neuronal activation in response to isotonic EVE, but it potentiated vasopressinergic and oxytocinergic neuronal activation in the medial magnocellular PVN (PaMM) and SON. Taken together, these results suggest that oestradiol increases the responsiveness of vasopressinergic and oxytocinergic magnocellular neurones in the PVN and SON in response to osmotic stimulation.
Resumo:
Modulation of salt appetite involves interactions between the circumventricular organs (CVOs) receptive areas and inhibitory hindbrain serotonergic circuits. Recent studies provide support to the idea that the serotonin action in the lateral parabrachial nucleus (LPBN) plays an important inhibitory role in the modulation of sodium appetite. The aim of the present work was to identify the specific groups of neurons projecting to the LPBN that are activated in the course of sodium appetite regulation, and to analyze the associated endocrine response, specifically oxytocin (OT) and atrial natriuretic peptide (ANP) plasma release, since both hormones have been implicated in the regulatory response to fluid reestablishment. For this purpose we combined the detection of a retrograde transported dye, Fluorogold (FG) injected into the LPBN with the analysis of the Fos immunocytochemistry brain pattern after sodium intake induced by sodium depletion. We analyzed the Fos-FG immunoreactivity after sodium ingestion induced by peritoneal dialysis (PD). We also determined OT and ANP plasma concentration by radioimmunoassay (RIE) before and after sodium intake stimulated by PD. The present study identifies specific groups of neurons along the paraventricular nucleus, central extended amygdala, insular cortex, dorsal raphe nucleus, nucleus of the solitary tract and the CVOs that are activated during the modulation of sodium appetite and have direct connections with the LPBN. It also shows that OT and ANP are released during the course of sodium satiety and fluid reestablishment. The result of this brain network activity may enable appropriate responses that re-establish the body fluid balance after induced sodium consumption. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Several studies suggest that hypothalamic cocaine- and amphetamine-regulated transcript (CART) may interact with the hypothalamic-pituitary-adrenal (HPA) axis in the control of neuroendocrine function and may also participate in cardiovascular regulation. Therefore, this study aimed to evaluate, in experimental models of isotonic (I-EVE) and hypertonic (H-EVE) extracellular volume expansion and water deprivation (WD), the activation of CART- and corticotrophin releasing factor (CRF)-immunoreactive neurons, as well as the relative expression of CART and CRF mRNAs in the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. Both H-EVE (0.30M NaCl, 2mL/100g of body weight, in 1 minute) and 24 hours of WD significantly increased plasma sodium concentrations, producing, respectively, either an increase or a decrease in extracellular volume. I-EVE (0.15M NaCl, 2mL/100g of body weight, in 1 minute) evoked a significant increase in the circulating volume accompanied by unaltered plasma concentrations of sodium. CART-expressing neurons of both magnocellular and parvocellular hypothalamic divisions were activated to produce Fos in response to H-EVE but not in response to I-EVE. Furthermore, increased expression of CART mRNA was found in the PVN of H-EVE but not I-EVE rats. These data show for the first time that EVE not only activates hypothalamic CRF neurons but also increases CRF mRNA expression in the PVN. In contrast, WD increases the number of CART-immunoreactive neurons activated to produce Fos in the PVN and SON but does not change the number of neurons double labeled for Fos and CRF or expression of CRF mRNA in the PVN. These findings provided new insights into the participation of CART in diverse processes within the PVN and SON, including its possible involvement in activation of the HPA axis and cardiovascular regulation in response to changes in extracellular volume and osmolality. (C) 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Adult rats submitted to perinatal salt overload presented renin-angiotensin system (RAS) functional disturbances. The RAS contributes to the renal development and renal damage in a 5/6 nephrectomy model. The aim of the present study was to analyze the renal structure and function of offspring from dams that received a high-salt intake during pregnancy and lactation. We also evaluated the influence of the prenatal high-salt intake on the evolution of 5/6 nephrectomy in adult rats. A total of 111 sixty-day-old rat pups from dams that received saline or water during pregnancy and lactation were submitted to 5/6 nephrectomy (nephrectomized) or to a sham operation (sham). The animals were killed 120 days after surgery, and the kidneys were removed for immunohistochemical and histological analysis. Systolic blood pressure (SBP), albuminuria, and glomerular filtration rate (GFR) were evaluated. Increased SBP, albuminuria, and decreased GFR were observed in the rats from dams submitted to high-sodium intake before surgery. However, there was no difference in these parameters between the groups after the 5/6 nephrectomy. The scores for tubulointerstitial lesions and glomerulosclerosis were higher in the rats from the sham saline group compared to the same age control rats, but there was no difference in the histological findings between the groups of nephrectomized rats. In conclusion, our data showed that the high-salt intake during pregnancy and lactation in rats leads to structural changes in the kidney of adult offspring. However, the progression of the renal lesions after 5/6 nephrectomy was similar in both groups.
Resumo:
Background: High sodium salicylate doses can cause reversible hearing loss and tinnitus, possibly due to reduced outer hair cell electromotility. Sodium salicylate is known to alter outer hair cell structure and function. This study determined the reversibility and cochlear recovery time after administration of an ototoxic sodium salicylate dose to guinea pigs with normal cochlear function. Study design: Prospective experimental investigation. Methods: All animals received a single 500 mg sodium salicylate dose, but with different durations of action. Function was evaluated before drug administration and immediately before sacrifice. Cochleae were processed and viewed using scanning electron microscopy. Results: Changes in outer hair cell function were observed to be present 2 hours after drug administration, with recovery of normal anatomy beginning after 24 hours. Subsequently, derangement and distortion of cilia reduced, with effects predominantly in row three. At 168 hours, cilia were near-normal but with mild distortions which interfered with normal cochlear physiology. Conclusions: Ciliary changes persisted for up to 168 hours after ototoxic sodium salicylate administration.
Resumo:
Background: Cigarette smoke exposure is considered an important negative prognostic factor for chronic rhinosinusitis (CRS) patients. However, there is no clear mechanistic evidence implicating cigarette smoke exposure in the poor clinical evolution of the disease or in the maintenance of the inflammatory state characterizing CRS. This study aimed to evaluate the effects of cigarette smoke exposure on respiratory cilia differentiation. Methods: Monse nasal septal epithelium cultures grown at an air-liquid interface were used as a model of respiratory epithelium. After 5 days of cell growth, cultures were exposed to air on the apical surface. Additionally, cigarette smoke condensate (CSC; the particulate phase of tobacco smoke) or cigarette smoke extract (CSE; the volatile phase) Were diluted in the basolateral compartment in different concentrations. After 15 days of continuous exposure, scanning electron microscopy and immunofluorescence for type IV tubulin were used to determine presence and maturation of cilia. Transepithelial resistance was also recorded to evaluate confluence and physiological barrier integrity. Results: CSC and CSE impair ciliogenesis in a dose-dependent manner with notable effects in concentrations higher than 30 mu g/mL, yielding >70% nonciliation and shorter cilia compared With control. No statistical difference on transepithelial resistance was evident. Conclusion: CSC and CSE exposure negatively impacts ciliogenesis of respiratory cells at concentrations not effecting transepithelial resistance. The impairment on ciliogenesis reduce the mucociliary clearance apparatuts after injury and/or infection and may explain the poor response to therapy for CRS patients exposed to tobacco smoke.
Resumo:
Experimental animal studies have shown that nicotine exposure during gestation alters the expression of fetal hypothalamic neuropeptides involved in the control of appetite. We aimed to determine whether the exposure to maternal smoking during gestation in humans is associated with an altered feeding behavior of the adult offspring. A longitudinal prospective cohort study was conducted including all births from Ribeirao Preto (Sao Paulo, Brazil) between 1978 and 1979. At 24 years of age, a representative random sample was re-evaluated and divided into groups exposed (n = 424) or not (n = 1586) to maternal smoking during gestation. Feeding behavior was analyzed using a food frequency questionnaire. Covariance analysis was used for continuous data and the chi(2) test for categorical data. Results were adjusted for birth weight ratio, body mass index, gender, physical activity and smoking, as well as maternal and subjects` schooling. Individuals exposed to maternal smoking during gestation ate more carbohydrates than proteins (as per the carbohydrate-to-protein ratio) than non-exposed individuals. There were no differences in the consumption of the macronutrients themselves. We propose that this adverse fetal life event programs the individual`s physiology and metabolism persistently, leading to an altered feeding behavior that could contribute to the development of chronic diseases in the long term.