929 resultados para Gut microbiota


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The enteric nervous system (ENS) modulates a number of digestive functions including well known ones, i.e. motility, secretion, absorption and blood flow, along with other critically relevant processes, i.e. immune responses of the gastrointestinal (GI) tract, gut microbiota and epithelial barrier . The characterization of the anatomical aspects of the ENS in large mammals and the identification of differences and similarities existing between species may represent a fundamental basis to decipher several digestive GI diseases in humans and animals. In this perspective, the aim of the present thesis is to highlight the ENS anatomical basis and pathological aspects in different mammalian species, such as horses, dogs and humans. Firstly, I designed two anatomical studies in horses:  “Excitatory and inhibitory enteric innervation of horse lower esophageal sphincter”.  “Localization of 5-hydroxytryptamine 4 receptor (5-HT4R) in the equine enteric nervous system”. Then I focused on the enteric dysfunctions, including:  A primary enteric aganglionosis in horses: “Extrinsic innervation of the ileum and pelvic flexure of foals with ileocolonic aganglionosis”.  A diabetic enteric neuropathy in dogs: “Quantification of nitrergic neurons in the myenteric plexus of gastric antrum and ileum of healthy and diabetic dogs”.  An enteric neuropathy in human neurological patients: “Functional and neurochemical abnormalities in patients with Parkinson's disease and chronic constipation”. The physiology of the GI tract is characterized by a high complexity and it is mainly dependent on the control of the intrinsic nervous system. ENS is critical to preserve body homeostasis as reflect by its derangement occurring in pathological conditions that can be lethal or seriously disabling to humans and animals. The knowledge of the anatomy and the pathology of the ENS represents a new important and fascinating topic, which deserves more attention in the veterinary medicine field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work was to investigate novel diagnostic and prognostic tools, postoperative treatments and epidemiologic factors impacting the outcome of surgical cases of colic. To make a more accurate diagnosis and establish a prognosis, several biomarkers have been investigated in colic patients. In this study we evaluated peritoneal PCT and blood ADMA and SDMA in SIRS positive and negative colic patients to be used as prognostic biomarkers. Our results highlighted the limits of these biomarkers in detection and the lack of specificity. In fact PCT was not detectable and even if ADMA and SDMA significantly increased in colic horses, they are not diagnostic nor prognostic markers for SIRS. Fluid therapy has been described to be crucial for the outcome of colic patients, nevertheless no guidelines have been established. Overhydration was the common practice in post surgical management. We compared cases with an extended fluid therapy protocol and cases with a restricted protocol. Results showed that survival rate and postoperative complications were similar between the groups, despite costs being significantly lower in the restricted group. The possible correlation between intestinal microbiota and colics has gained interest. In this study, cecal and colonic content from horses undergoing laparotomy were collected, and the microbiota analized. Results showed some differences in microbiota between discharged and non discharged patients, and between strangulating and non strangulating types of colic, that might suggest some influence of hind gut microbiota on the disease. A multicentric study involving three veterinary teaching hospitals on the italian territory was conducted investigating factors affecting postoperative survival and complications in colics. Results showed that the influence of age, PCV, TPP, blood lactate, reflux, type of disease, type of lesion, presence of anastomosis, duration of surgery and surgeons, were in line with literature. Amount of crystalloids used could affected the outcome.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In vitro batch culture fermentations were conducted with grape seed polyphenols and human faecal microbiota, in order to monitor both changes in precursor flavan-3-ols and the formation of microbial-derived metabolites. By the application of UPLC-DAD-ESI-TQ MS, monomers, and dimeric and trimeric procyanidins were shown to be degraded during the first 10 h of fermentation, with notable inter-individual differences being observed between fermentations. This period (10 h) also coincided with the maximum formation of intermediate metabolites, such as 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone and 4-hydroxy-5-(3′,4′-dihydroxyphenyl)-valeric acid, and of several phenolic acids, including 3-(3,4-dihydroxyphenyl)-propionic acid, 3,4-dihydroxyphenylacetic acid, 4-hydroxymandelic acid, and gallic acid (5–10 h maximum formation). Later phases of the incubations (10–48 h) were characterised by the appearance of mono- and non-hydroxylated forms of previous metabolites by dehydroxylation reactions. Of particular interest was the detection of γ-valerolactone, which was seen for the first time as a metabolite from the microbial catabolism of flavan-3-ols. Changes registered during fermentation were finally summarised by a principal component analysis (PCA). Results revealed that 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone was a key metabolite in explaining inter-individual differences and delineating the rate and extent of the microbial catabolism of flavan-3-ols, which could finally affect absorption and bioactivity of these compounds.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Weaning is a crucial period in the management of piglets. In modern piggeries economic interest make weaning age decrease more and more and the detrimental consequences of weaning have as much importance as earlier the weaning occurs. The risk of development of post-weaning diarrhea (PWD) in piglets is high and PWD is the cause of serious economic losses in pig herds. In the past the supplementation of the feed given after weaning with growth promoters antibiotics, in order to keep PWD under control, used to be a common practice, but their usage has been banned in EU since 2006. This measure led to the investigation of alternative suitable feed supplements that would be reasonably efficient in protecting and sustaining animal health and performance. Aim of this thesis was to evaluate the effect of some different alternatives to growth-promoters antibiotics on weaning piglets and to assess if some of them could be considered as valuables options to replace auxinic in animal feeding. The study is composed by four experimental trials. The first one aims to identify mechanisms involved in the auxinic effects of antibiotics in the diets; the following three evaluate the addition butyric acid, tryptophan, and nitrate as alternative to in-feed antimicrobials. Although some results are controversial, it appears from the data presented that the alternatives to in-feed antibiotics considered may exert positive effects on some zootechnical and health parameters on piglet in the post-weaning period. Anyway, the mechanism of action and the interaction with microbiota of such additives should be investigated inside out because many effects remains poorly understood.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using a systems biology approach, we discovered and dissected a three-way interaction between the immune system, the intestinal epithelium and the microbiota. We found that, in the absence of B cells, or of IgA, and in the presence of the microbiota, the intestinal epithelium launches its own protective mechanisms, upregulating interferon-inducible immune response pathways and simultaneously repressing Gata4-related metabolic functions. This shift in intestinal function leads to lipid malabsorption and decreased deposition of body fat. Network analysis revealed the presence of two interconnected epithelial-cell gene networks, one governing lipid metabolism and another regulating immunity, that were inversely expressed. Gene expression patterns in gut biopsies from individuals with common variable immunodeficiency or with HIV infection and intestinal malabsorption were very similar to those of the B cell-deficient mice, providing a possible explanation for a longstanding enigmatic association between immunodeficiency and defective lipid absorption in humans.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A prerequisite for establishment of mutualism between the host and the microbial community that inhabits the large intestine is the stringent mucosal compartmentalization of microorganisms. Microbe-loaded dendritic cells trafficking through lymphatics are arrested at the mesenteric lymph nodes, which constitute the firewall of the intestinal lymphatic circulation. We show in different mouse models that the liver, which receives the intestinal venous blood circulation, forms a vascular firewall that captures gut commensal bacteria entering the bloodstream during intestinal pathology. Phagocytic Kupffer cells in the liver of mice clear commensals from the systemic vasculature independently of the spleen through the liver's own arterial supply. Damage to the liver firewall in mice impairs functional clearance of commensals from blood, despite heightened innate immunity, resulting in spontaneous priming of nonmucosal immune responses through increased systemic exposure to gut commensals. Systemic immune responses consistent with increased extraintestinal commensal exposure were found in humans with liver disease (nonalcoholic steatohepatitis). The liver may act as a functional vascular firewall that clears commensals that have penetrated either intestinal or systemic vascular circuits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Short-chain fatty acids (SCFAs) are fermentation end products produced by the intestinal microbiota and have anti-inflammatory and histone deacetylase-inhibiting properties. Recently, a dual relationship between the intestine and kidneys has been unraveled. Therefore, we evaluated the role of SCFA in an AKI model in which the inflammatory process has a detrimental role. We observed that therapy with the three main SCFAs (acetate, propionate, and butyrate) improved renal dysfunction caused by injury. This protection was associated with low levels of local and systemic inflammation, oxidative cellular stress, cell infiltration/activation, and apoptosis. However, it was also associated with an increase in autophagy. Moreover, SCFAs inhibited histone deacetylase activity and modulated the expression levels of enzymes involved in chromatin modification. In vitro analyses showed that SCFAs modulated the inflammatory process, decreasing the maturation of dendritic cells and inhibiting the capacity of these cells to induce CD4(+) and CD8(+) T cell proliferation. Furthermore, SCFAs ameliorated the effects of hypoxia in kidney epithelial cells by improving mitochondrial biogenesis. Notably, mice treated with acetate-producing bacteria also had better outcomes after AKI. Thus, we demonstrate that SCFAs improve organ function and viability after an injury through modulation of the inflammatory process, most likely via epigenetic modification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of bacteria in the midgut of mosquitoes antagonizes infectious agents, such as Dengue and Plasmodium, acting as a negative factor in the vectorial competence of the mosquito. Therefore, knowledge of the molecular mechanisms involved in the control of midgut microbiota could help in the development of new tools to reduce transmission. We hypothesized that toxic reactive oxygen species (ROS) generated by epithelial cells control bacterial growth in the midgut of Aedes aegypti, the vector of Yellow fever and Dengue viruses. We show that ROS are continuously present in the midgut of sugar-fed (SF) mosquitoes and a blood-meal immediately decreased ROS through a mechanism involving heme-mediated activation of PKC. This event occurred in parallel with an expansion of gut bacteria. Treatment of sugar-fed mosquitoes with increased concentrations of heme led to a dose dependent decrease in ROS levels and a consequent increase in midgut endogenous bacteria. In addition, gene silencing of dual oxidase (Duox) reduced ROS levels and also increased gut flora. Using a model of bacterial oral infection in the gut, we show that the absence of ROS resulted in decreased mosquito resistance to infection, increased midgut epithelial damage, transcriptional modulation of immune-related genes and mortality. As heme is a pro-oxidant molecule released in large amounts upon hemoglobin degradation, oxidative killing of bacteria in the gut would represent a burden to the insect, thereby creating an extra oxidative challenge to the mosquito. We propose that a controlled decrease in ROS levels in the midgut of Aedes aegypti is an adaptation to compensate for the ingestion of heme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Secretory IgA (SIgA) serves as the first line of defense in protecting the intestinal epithelium from enteric toxins and pathogenic microorganisms. Through a process known as immune exclusion, SIgA promotes the clearance of antigens and pathogenic microorganisms from the intestinal lumen by blocking their access to epithelial receptors, entrapping them in mucus, and facilitating their removal by peristaltic and mucociliary activities. In addition, SIgA functions in mucosal immunity and intestinal homeostasis through mechanisms that have only recently been revealed. In just the past several years, SIgA has been identified as having the capacity to directly quench bacterial virulence factors, influence composition of the intestinal microbiota by Fab-dependent and Fab-independent mechanisms, promote retro-transport of antigens across the intestinal epithelium to dendritic cell subsets in gut-associated lymphoid tissue, and, finally, to downregulate proinflammatory responses normally associated with the uptake of highly pathogenic bacteria and potentially allergenic antigens. This review summarizes the intrinsic biological activities now associated with SIgA and their relationships with immunity and intestinal homeostasis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Human systemic antibody responses to commensal microbiota are not well characterised during health and disease. Of particular interest is the analysis of their potential modulation caused by chronic HIV-1 infection which is associated with sustained enteropathy and systemic B cell disturbances reflected by impaired B cell responses and chronic B cell hyperactivity. The mechanisms underlying B cell hyperactivation and the specificities of the resulting hypergammaglobulinaemia are only poorly understood. METHODS: By a technique referred to as live bacterial FACS (fluorescence-activated cell sorting), the present study investigated systemic antibody responses to several gut and skin commensal bacteria as well as Candida albicans in longitudinal plasma and serum samples from healthy donors, chronic HIV-1-infected individuals with or without diarrhoea and patients with inflammatory bowel disease (IBD). RESULTS: The data show that systemic antibody responses to the commensal microbiota were abundantly present in humans and remained remarkably stable over years. Overall systemic antibody responses to gut commensal bacteria were not affected during chronic HIV-1 infection, with titres decreasing when normalised to elevated plasma immunoglobulin G (IgG) levels found in patients with HIV. In contrast, increases in the titres of high affinity antimicrobiota antibodies were detected in patients with IBD, demonstrating that conditions with known increased intestinal permeability and aberrant mutualism can induce changes in antibody titres observed in these assays. CONCLUSION: Neither HIV-associated enteropathy nor B cell dysfunction impact on the high-affinity systemic antibody responses to gut commensal bacteria. HIV-associated hypergammaglobulinaemia is therefore unlikely to be driven by induction of antimicrobiota antibodies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We show for the first time that the ventral diverticulum of the mosquito gut (impermeable sugar storage organ) harbors microorganisms. The gut diverticulum from newly emerged and non-fed Aedes aegypti was dissected under aseptic conditions, homogenized and plated on BHI medium. Microbial isolates were identified by sequencing of 16S rDNA for bacteria and 28S rDNA for yeast. A direct DNA extraction from Ae. aegypti gut diverticulum was also performed. The bacterial isolates were: Bacillus sp., Bacillus subtilis and Serratia sp. The latter was the predominant bacteria found in our isolations. The yeast species identified was Pichia caribbica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Toll-like receptor ( TLR) s ignals are key to maintaining hostmicrobial i nteractions. T he T oll-interacting-protein (Tollip) is a ubiquitously-expressed inhibitor of inflammasome a nd TLR signaling. W e hypothesized that T ollip might control g ut homeostasis. G enetic ablation of T ollip d id not lead to spontaneous colitis b ut h ad d ramatic c onsequences on t he intestinal expression of the α-defensin cryptidin 4 and the C-type lectin R EGIIIβ. These c hanges were associated with intestinal dysbiosis a nd e nhanced colonization b y segmented filamentous bacteria - a k ey p ro-inflammatory component of the microbiota. Tollip deficiency increased susceptibility to dextran sulfate sodium (DSS) colitis and aggravated chronic Th17-driven colitis in IL-10-/- mice. Flora d epletion w ith a ntibiotics in T ollip-/- mice w as not sufficient to restore DSS colitis susceptibility and deletion of Tollip in n on-hematopoietic c ells using bone-marrow chimeras w as sufficient to increase s usceptibility t o DSS colitis. After D SS administration, we o bserved several e pithelial defects i n Tollip-/- mice including early tight junctions disruption, increased epithelial apoptosis, and increased intestinal permeability. Overall, our data show that T ollip significantly impacts intestinal h omeostasis by controlling b acterial ecology and intestinal r esponse to chemical and immunological stresses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1,2-sn-Diacylglycerols (DAGs) are activators of protein kinase C (PKQ, which is involved in the regulation of colonic mucosal proliferation. Extracellular DAG has been shown to stimulate the growth of cancer cell lines in vitro and may therefore play an important role in tumor promotion. DAG has been detected in human fecal extracts and is thought to be of microbial origin. Hitherto, no attempts have been made to identify the predominant fecal bacterial species involved in its production. We therefore used anaerobic batch culture systems to determine whether fecal bacteria could utilize phosphatidylcholine (0.5% [wt/vol]) to produce DAG. Production was found to be dependent upon the presence of the substrate and was enhanced in the presence of high concentrations of deoxycholate (5 and 10 mM) in the growth medium. Moreover, its production increased with the pH, and large inter- and intraindividual variations were observed between cultures seeded with inocula from different individuals. Clostridia and Escherichia coli multiplied in the fermentation systems, indicating their involvement in phosphatidylcholine metabolism. On the other hand, there was a significant decrease in the number of Bifidobacterium spp. in the presence of phosphatidylcholine. Pure-culture experiments showed that 10 of the 12 strains yielding the highest DAG levels (>50 nmol/ml) were isolated from batch culture enrichments run at pH 8.5. We found that the strains capable of producing large amounts of DAG were predominantly Clostridium bifermentans (8 of 12), followed by Escherichia coli (2 of 12). Interestingly, one DAG-producing strain was Bifidobacterium infantis, which is often considered a beneficial gut microorganism. Our results have provided further evidence that fecal bacteria can produce DAG and that specific bacterial groups are involved in this process. Future strategies to reduce DAG formation in the gut should target these species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gut microflora-mucosal interactions may be involved in the pathogenesis of irritable bowel syndrome (IBS). To investigate the efficacy of a novel prebiotic trans-galactooligosaccharide in changing the colonic microflora and improve the symptoms in IBS sufferers. In all, 44 patients with Rome II positive IBS completed a 12-week single centre parallel crossover controlled clinical trial. Patients were randomized to receive either 3.5 g/d prebiotic, 7 g/d prebiotic or 7 g/d placebo. IBS symptoms were monitored weekly and scored according to a 7-point Likert scale. Changes in faecal microflora, stool frequency and form (Bristol stool scale) subjective global assessment (SGA), anxiety and depression and QOL scores were also monitored. The prebiotic significantly enhanced faecal bifidobacteria (3.5 g/d P < 0.005; 7 g/d P < 0.001). Placebo was without effect on the clinical parameters monitored, while the prebiotic at 3.5 g/d significantly changed stool consistency (P < 0.05), improved flatulence (P < 0.05) bloating (P < 0.05), composite score of symptoms (P < 0.05) and SGA (P < 0.05). The prebiotic at 7 g/d significantly improved SGA (P < 0.05) and anxiety scores (P < 0.05). The galactooligosaccharide acted as a prebiotic in specifically stimulating gut bifidobacteria in IBS patients and is effective in alleviating symptoms. These findings suggest that the prebiotic has potential as a therapeutic agent in IBS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Certain milk factors may promote the growth of a host-friendly gastrointestinal microbiota, for example, one that is predominated by bifidobacteria, a perceived healthpromoting genus. This may explain why breast-fed infants experience fewer intestinal infections than their formula-fed counterparts who are believed to have a more diverse microbiota, which is similar to that of adults. The effects of formulas supplemented with 2 such ingredients from bovine milk, a-lactalbumin (alpha-lac) and casein glycomacropeptide (GMP), on gut flora were investigated in this study. Patients and Methods: Six-week-old (4-8 wk), healthy term infants were randomised to a standard infant formula or 1 of 2 test formulae enriched in alpha-Jac with higher or lower GMP until 6 months. Faecal bacteriology was determined by the culture-independent procedure fluorescence in situ hybridisation. Results: There was a large fluctuation of bacterial counts within groups with no statistically significant differences between groups. Although all groups showed a. predominance of bifidobacteria, breast-fed infants had a small temporary increase in counts. Other bacterial levels varied in formula-fed groups, which overall showed an adult-like faecal microflora. Conclusions: It can be speculated that a prebiotic effect for alpha-lac and GMP is achieved only with low starting populations of beneficial microbiota (eg, infants not initially breast-fed.