900 resultados para Ground vibration
Resumo:
Large amplitude bus bar aeolian vibration may lead to post insulator damage. Different damping applications are used to decrease the risk of large amplitude aeolian vibration. In this paper the post insulator load caused by the bus bar aeolian vibration and the effect of damping methods are evaluated. The effects of three types of bus bar connectors and three types of primary structures are studied. Two actual damping devices, damping cable and their combinations are studied. The post insulator loads are studied with strain gage based custom made force sensors installed on the both ends of the post insulator and with the displacement sensor installed on the midpoint of the bus bar. The post insulator loads are calculated from the strain values and the damping properties are determined from the displacement history. The bus bar is deflected with a hanging weight. The weight is released and the bus bar is left to free damped vibration. Both actual bus bar vibration dampers RIBE and SBI were very effective against the aeolian vibration. Combining vibration damper with damping cable will increase the damping ratio but it may be unnecessary considering the extra effort. Bus bar connector type or primary structure have no effect on the vertical load. The bending moment at the post insulator with double sided bus bar connector is significantly higher than at the post insulator with single sided bus bar connector. No reliable conclusions about bus bar connector type effect can be done, but the roller bearing type or central bearing type connector may reduce the bending moment. The RHS steel frame as primary structure may increase the bending moment peak values since it is the least rigid primary structure type and it may start to vibrate as a response to the awakening force of the vibrating bus bar.
Resumo:
This paper investigates defect detection methodologies for rolling element bearings through vibration analysis. Specifically, the utility of a new signal processing scheme combining the High Frequency Resonance Technique (HFRT) and Adaptive Line Enhancer (ALE) is investigated. The accelerometer is used to acquire data for this analysis, and experimental results have been obtained for outer race defects. Results show the potential effectiveness of the signal processing technique to determine both the severity and location of a defect. The HFRT utilizes the fact that much of the energy resulting from a defect impact manifests itself in the higher resonant frequencies of a system. Demodulation of these frequency bands through use of the envelope technique is then employed to gain further insight into the nature of the defect while further increasing the signal to noise ratio. If periodic, the defect frequency is then present in the spectra of the enveloped signal. The ALE is used to enhance the envelope spectrum by reducing the broadband noise. It provides an enhanced envelope spectrum with clear peaks at the harmonics of a characteristic defect frequency. It is implemented by using a delayed version of the signal and the signal itself to decorrelate the wideband noise. This noise is then rejected by the adaptive filter that is based upon the periodic information in the signal. Results have been obtained for outer race defects. They show the effectiveness of the methodology to determine both the severity and location of a defect. In two instances, a linear relationship between signal characteristics and defect size is indicated.
Resumo:
This paper examines two passive techniques for vibration reduction in mechanical systems: the first one is based on dynamic vibration absorbers (DVAs) and the second uses resonant circuit shunted (RCS) piezoceramics. Genetic algorithms are used to determine the optimal design parameters with respect to performance indexes, which are associated with the dynamical behavior of the system over selected frequency bands. The calculation of the frequency response functions (FRFs) of the composite structure (primary system + DVAs) is performed through a substructure coupling technique. A modal technique is used to determine the frequency response function of the structure containing shunted piezoceramics which are bonded to the primary structure. The use of both techniques simultaneously on the same structure is investigated. The methodology developed is illustrated by numerical applications in which the primary structure is represented by simple Euler-Bernoulli beams. However, the design aspects of vibration control devices presented in this paper can be extended to more complex structures.
Resumo:
The aim of this work is to evaluate the mechanism of stock removal and the ground surface quality of advanced ceramics machined by a surface grinding process using diamond grinding wheels. The analysis of the grinding performance was done regarding the cutting surface wear behavior of the grinding wheel for ceramic workpieces. The ground surface was evaluated using Scanning Electron Microscopy (SEM). As a result it can be said that the mechanism of material removal in the grinding of ceramic is largely one of brittle fracture. The increase of the h max can reduce the tangential force required by the process. Although, it results in an increase in the surface damage, reducing the mechanical properties of the ground component.
Resumo:
The aim of the present work is to study the noise and vibration damping capacity of ferromagnetic Fe-16%Cr base alloys (before and after heat treatment) with different Al and Mo contents. The noise damping was evaluated by the level of sound emission after an impact. The vibration damping was studied using a cantilever device. In addition to these tests, the magnetic structure of the materials was also investigated by Kerr effect. It was verified that the materials can decrease noise level in the frequency range of human earring. The vibration damping is influenced by heat treatment and chemical composition of the alloy. The improvement of vibration damping after heat treatment is ascribed to the decrease of internal stresses in materials and changes in magnetic domain structures.
Resumo:
This contribution discusses the nonlinear dynamics of a pin-ended elasto-plastic beam with both kinematic and isotropic hardening. An iterative numerical procedure based on the operator split technique is developed in order to deal with the nonlinearities in the equations of motion. Free and forced responses for harmonic sinusoidal and square wave excitations are investigated. Numerical simulations present many interesting behaviors such as jump phenomena, sensitivity to initial conditions, chaos and transient chaos. These results indicate that there are practical problems in predicting the response of the beam even when periodic steady state response is expected.
Resumo:
This paper applies the Multi-Harmonic Nonlinear Receptance Coupling Approach (MUHANORCA) (Ferreira 1998) to evaluate the frequency response characteristics of a beam which is clamped at one end and supported at the other end by a nonlinear cubic stiffness joint. In order to apply the substructure coupling technique, the problem was characterised by coupling a clamped linear beam with a nonlinear cubic stiffness joint. The experimental results were obtained by a sinusoidal excitation with a special force control algorithm where the level of the fundamental force is kept constant and the level of the harmonics is kept zero for all the frequencies measured.
Resumo:
In order to reduce greenhouse emissions from forest degradation and deforestation the international programme REDD (Reducing Emissions from Deforestation and forest Degradation) was established in 2005 by the United Nations Framework Convention on Climate Change (UNFCCC). This programme is aimed to financially reward to developing countries for any emissions reductions. Under this programm the project of setting up the payment system in Nepal was established. This project is aimed to engage local communities in forest monitoring. The major objective of this thesis is to compare and verify data obtained from di erect sources - remotely sensed data, namely LiDAR and field sample measurements made by two groups of researchers using two regression models - Sparse Bayesian Regression and Bayesian Regression with Orthogonal Variables.
Resumo:
The dissertation proposes two control strategies, which include the trajectory planning and vibration suppression, for a kinematic redundant serial-parallel robot machine, with the aim of attaining the satisfactory machining performance. For a given prescribed trajectory of the robot's end-effector in the Cartesian space, a set of trajectories in the robot's joint space are generated based on the best stiffness performance of the robot along the prescribed trajectory. To construct the required system-wide analytical stiffness model for the serial-parallel robot machine, a variant of the virtual joint method (VJM) is proposed in the dissertation. The modified method is an evolution of Gosselin's lumped model that can account for the deformations of a flexible link in more directions. The effectiveness of this VJM variant is validated by comparing the computed stiffness results of a flexible link with the those of a matrix structural analysis (MSA) method. The comparison shows that the numerical results from both methods on an individual flexible beam are almost identical, which, in some sense, provides mutual validation. The most prominent advantage of the presented VJM variant compared with the MSA method is that it can be applied in a flexible structure system with complicated kinematics formed in terms of flexible serial links and joints. Moreover, by combining the VJM variant and the virtual work principle, a systemwide analytical stiffness model can be easily obtained for mechanisms with both serial kinematics and parallel kinematics. In the dissertation, a system-wide stiffness model of a kinematic redundant serial-parallel robot machine is constructed based on integration of the VJM variant and the virtual work principle. Numerical results of its stiffness performance are reported. For a kinematic redundant robot, to generate a set of feasible joints' trajectories for a prescribed trajectory of its end-effector, its system-wide stiffness performance is taken as the constraint in the joints trajectory planning in the dissertation. For a prescribed location of the end-effector, the robot permits an infinite number of inverse solutions, which consequently yields infinite kinds of stiffness performance. Therefore, a differential evolution (DE) algorithm in which the positions of redundant joints in the kinematics are taken as input variables was employed to search for the best stiffness performance of the robot. Numerical results of the generated joint trajectories are given for a kinematic redundant serial-parallel robot machine, IWR (Intersector Welding/Cutting Robot), when a particular trajectory of its end-effector has been prescribed. The numerical results show that the joint trajectories generated based on the stiffness optimization are feasible for realization in the control system since they are acceptably smooth. The results imply that the stiffness performance of the robot machine deviates smoothly with respect to the kinematic configuration in the adjacent domain of its best stiffness performance. To suppress the vibration of the robot machine due to varying cutting force during the machining process, this dissertation proposed a feedforward control strategy, which is constructed based on the derived inverse dynamics model of target system. The effectiveness of applying such a feedforward control in the vibration suppression has been validated in a parallel manipulator in the software environment. The experimental study of such a feedforward control has also been included in the dissertation. The difficulties of modelling the actual system due to the unknown components in its dynamics is noticed. As a solution, a back propagation (BP) neural network is proposed for identification of the unknown components of the dynamics model of the target system. To train such a BP neural network, a modified Levenberg-Marquardt algorithm that can utilize an experimental input-output data set of the entire dynamic system is introduced in the dissertation. Validation of the BP neural network and the modified Levenberg- Marquardt algorithm is done, respectively, by a sinusoidal output approximation, a second order system parameters estimation, and a friction model estimation of a parallel manipulator, which represent three different application aspects of this method.
Resumo:
A single bout of resistance exercise (RE) induces hormonal and immune responses, playing an important role in a long-term adaptive process. Whole-body vibration (WBV) has also been shown to affect hormonal responses. Evidence suggests that combining WBV with RE may amplify hormonal and immune responses due to the increased neuromuscular load. Therefore, the aim of this study was to evaluate salivary cortisol (Scortisol) and salivary IgA (SIgA) concentrations following a RE session combined or not with WBV. Nine university students (22.9 ± 5.1 years, 175.8 ± 5.2 cm, and 69.2 ± 7.3 kg) performed five sets of squat exercise (70% one-repetition-maximum) combined (R+V30) or not (R) with WBV at 30 Hz. Saliva samples were obtained before and after exercise. Subjects also rated their effort according to the Borg CR-10 scale (RPE). Data were analyzed by a mixed model. RPE was higher after R+V30 (8.3 ± 0.7) compared to R (6.2 ± 0.7). However, Scortisol (pre: 10.6 ± 7.6 and 11.7 ± 7.6, post: 8.3 ± 6.3 and 10.2 ± 7.2 ng/mL for R and R+V30, respectively) and SIgA concentrations (pre: 98.3 ± 22.6 and 116.1 ± 51.2, post: 116.6 ± 64.7 and 143.6 ± 80.5 µg/mL for R and R+V30, respectively) were unaffected. No significant correlations were observed between Scortisol and RPE (r = 0.45, P = 0.22; r = 0.30, P = 0.42, for R and R+V30, respectively). On the basis of these data, neither protocol modified salivary cortisol or IgA, although RPE was higher after R+V30 than R.
Resumo:
The aim of this study was to investigate the effect of adding whole-body vibration (WBV; frequency = 35 to 40 Hz; amplitude = 4 mm) to squat training on the T-cell proliferative response of elderly patients with osteoarthritis (OA) of the knee. This study was a randomized controlled trial in which the selected variables were assessed before and after 12 weeks of training. Twenty-six subjects (72 ± 5 years of age) were divided into three groups: 1) squat training with WBV (WBV, N = 8); 2) squat training without WBV (N = 10), and 3) a control group (N = 8). Women who were ≥60 years of age and had been diagnosed with OA in at least one knee were eligible. The intervention consisted of 12 uninterrupted weeks of squatting exercise training performed 3 times/week. Peripheral blood mononuclear cells were obtained from peripheral blood collected before and after training. The proliferation of TCD4+ and TCD8+ cells was evaluated by flow cytometry measuring the carboxyfluorescein succinimidyl ester fluorescence decay before and after the intervention (∆). The proliferative response of TCD4+ cells (P = 0.02, effect size = 1.0) showed a significant decrease (23%) in the WBV group compared to the control group, while there was no difference between groups regarding the proliferative response of TCD8+ cells (P = 0.12, effect size = 2.23). The data suggest that the addition of WBV to squat exercise training might modulate T-cell-mediated immunity, minimizing or slowing disease progression in elderly patients with OA of the knee.
Resumo:
This thesis studies energy efficiencies and technical properties of gas driven ground source heat pumps and pump systems. The research focuses on two technologies: gas engine driven compressor heat pump and thermally driven gas absorption heat pump. System consist of a gas driven compressor or absorption ground source heat pump and a gas condensing boiler, which covers peak load. The reference system is a standard electrically powered compressor heat pump with electric heating elements for peak load. The systems are compared through primary energy ratios. Coefficient of performances of different heat pump technologies are also compared. At heat pump level, gas driven heat pumps are having lower coefficient of performances as compared with corresponding electric driven heat pump. However, gas heat pumps are competitive when primary energy ratios, where electricity production losses are counted in, are compared. Technically, gas heat pumps can potentially achieve a slightly higher temperatures with greater total energy efficiency as compared to the electric driven heat pump. The primary energy ratios of gas heat pump systems in relation to EHP-system improves when the share of peak load increases. Electric heat pump system's overall energy efficiency is heavily dependent on the electricity production efficiency. Economy as well as CO2-emissions were not examined in this thesis, which however, would be good topics for further study.
Resumo:
Gear rattle is a phenomenon that occurs when idling or lightly loaded gears collide due to engine’s torque fluctuations. This behaviour is related to vibration behaviour of the transmission system. Aim of this master’s thesis is to evaluate Adams and Adams/Machinery as a simulation tools for modelling the rattle e ect in a transmission system. A case study of tractor’s power take-o driveline, suspected to be prone to rattle, is performed in this work. Modelling methods used by Adams in this type of study are presented in the theory section while simulation model build with the software during this work is presented in the results. The Machinery toolbox is used to create gears and bearings while other model components are created with standard Adams tool set. Geometries and excitations are exported from other softwares. Results were obtained from multiple variations of a base model. These result sets and literature review suggest that Adams/Machinery may not be the most suitable tool for rattle analysis. While the system behaviour was partially captured, for accurate modelling user-written routines must be used which may be more easily performed with other tools. Further research about this topic is required.
Resumo:
Coffee is one of the most appreciated drinks in the world. Coffee ground is obtained from the fruit of a small plant that belongs to the genus Coffea. Coffea arabica and Coffea canephora robusta are the two most commercially important species. They are more commonly known as arabica and robusta, respectively. Two-thirds of Coffea arabica plants are grown in South and Central America, and Eastern Africa - the place of origin for this coffee species. Contamination by microorganisms has been a major matter affecting coffee quality in Brazil, mainly due to the harvesting method adopted. Brazilian harvests are based on fruits collected from the ground mixed with those that fall on collection cloths. As the Bacillus cereus bacterium frequently uses the soil as its environmental reservoir, it is easily capable of becoming a contaminant. This study aimed to evaluate the contamination and potential of B. cereus enterotoxin genes encoding the HBL and NHE complexes, which were observed in strains of ground and roasted coffee samples sold in Rio de Janeiro. The PCR (Polymerase Chain Reaction) results revealed high potential of enterotoxin production in the samples. The method described by Speck (1984) was used for the isolation of contaminants. The investigation of the potential production of enterotoxins through isolates of the microorganism was performed using the B. cereus enterotoxin Reverse Passive Latex Agglutination test-kit (BCET-RPLA, Oxoid), according to the manufacturer's instructions. The potential of enterotoxin production was investigated using polymerase chain reaction (PCR) methods for hblA, hblD and hblC genes (encoding hemolysin HBL) and for nheA, nheB and nheC genes (encoding non-hemolytic enterotoxin - NHE). Of all the 17 strains, 100% were positive for at least 1 enterotoxin gene; 52.9% (9/17) were positive for the 3 genes encoding the HBL complex; 35.3% (6/17) were positive for the three NHE encoding genes; and 29.4% (5/17) were positive for all enterotoxic genes.